[1]谷涛,李永丰,周潮洋,等.取代脲类除草剂降解菌鞘氨醇杆菌(Sphingobium sp.)Pu21的分离和鉴定与降解特性[J].南京农业大学学报,2017,(4):655-663.[doi:10.7685/jnau.201609042]
 GU Tao,LI Yongfeng,ZHOU Chaoyang,et al.Isolation,identification and biodegradation characteristics of phenylurea herbicide-degrading bacterium Sphingobium sp.Pu21[J].Journal of Nanjing Agricultural University,2017,(4):655-663.[doi:10.7685/jnau.201609042]

取代脲类除草剂降解菌鞘氨醇杆菌(Sphingobium sp.)Pu21的分离和鉴定与降解特性()




Isolation,identification and biodegradation characteristics of phenylurea herbicide-degrading bacterium Sphingobium sp.Pu21
谷涛1 李永丰1 周潮洋2 张迹3 闫新2 李顺鹏2
1. 江苏省农业科学院植物保护研究所, 江苏 南京 210014;
2. 南京农业大学农业部农业环境微生物工程重点开放实验室, 江苏 南京 210095;
3. 淮阴师范学院江苏省环洪泽湖生态农业生物技术重点实验室, 江苏 淮安 223300
GU Tao1 LI Yongfeng1 ZHOU Chaoyang2 ZHANG Ji3 YAN Xin2 LI Shunpeng2
1. Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
2. Key Laboratory of Microbiological Engineering Agricultural Environment, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Chin
phenylurea herbicidesdegrading-bacteriabiodegradation characteristicsmetabolic pathway
[目的]分离取代脲类除草剂的高效降解菌,为农药污染土壤的生物修复提供理论依据和物质基础。[方法]从农药厂废水处理池的活性污泥中分离筛选到1株取代脲类除草剂的高效降解菌株,结合形态、生理生化特征和16S rRNA基因序列对其进行鉴定,并研究其降解特性和降解途径。[结果]经鉴定,菌株Pu21为鞘氨醇杆菌(Sphingobium sp.),该菌能同时降解NN-二甲基取代脲类除草剂异丙隆和N-甲氧基-N-甲基取代脲类除草剂利谷隆。外界温度在25~35 ℃时对异丙隆和利谷隆降解影响较小,降解2种除草剂的最适温度均为35 ℃。在初始pH值为6.0~8.0时皆能快速降解异丙隆和利谷隆,最适pH值均为7.0。外加葡萄糖或麦芽糖时,对异丙隆的降解没有影响,但能提高利谷隆的降解,加入蛋白胨或酵母粉后2种除草剂的降解效率都显著提高。降解谱试验表明,菌株Pu21还可以降解敌草隆、伏草隆、绿麦隆、甲氧隆、灭草隆、非草隆和绿谷隆。依据HPLC和MS/MS结果,推测Pu21降解异丙隆途径为:异丙隆脲基侧链N-上脱甲基生成1-(4-异丙基苯基)-3-甲基脲(MDIPU),接着脱甲基生成1-对异丙基苯基脲(DDIPU),断开脲桥形成对异丙基苯胺(4IA)。利谷隆降解途径为:利谷隆脲桥直接断裂生成3.4-二氯苯胺(3,4-DCA)。[结论]菌株Pu21具有优良的降解能力,且降解底物谱广,在取代脲污染土壤的生物修复或生产废水生物强化处理中应用前景广阔。
[Objectives]The aim of this study is to isolate high efficient phenylurea herbicides-degrading bacteria,and provide theoretical foundation and material basis for bioremediation of the pesticide-contaminating soil. [Methods]A bacterial strain designated as strain Pu21,capable of degrading phenylurea-herbicides efficiently,was isolated from activated sludge collected from the wastewater treatment system of a pesticide factory,and then identified according to its phenotype,physiological and biochemical characteristics and the similarity analysis of its 16S rRNA gene sequence. After that,the degradation characteristics and pathway of isoproturon and linuron by Pu21 were studied. [Results]The bacterium Pu21,identified as Sphingobium sp.,could degrade both isoproturon and linuron,which belong to N,N-dimethyl-substituted phenylurea herbicide and N-methoxy-N-methyl-substituted phenylurea herbicide,respectively. This strain could degrade isoproturon and linuron efficiently in the temperature range of 25-35 ℃ and pH value range of 6.0-8.0. The optimum temperature and pH value for degradation were 35 ℃ and 7.0,respectively. The addition of glucose or maltose considerably enhanced the degradation rate of linuron rather than isoproturon. However,the degradation rates of these two herbicides were increased significantly while adding peptone or yeast extract as co-substrate. Strain Pu21 could also degrade other phenylurea herbicides such as diuron,fluometuron,ide,chlorotoluron,metoxuron,monuron,fenuron and monolinuron. Based on the data of HPLC and MS/MS results,we proposed isoproturon degradation pathway in strain Pu21. In which,isoproturon was degraded by mono-N-demethylation to yield N-(4-isopropylphenyl)-N-methylurea(MDIPU),then MDIPU was transformed to 1-(4-isopropylphenyl)urea(DDIPU)via further N-demethylation,followed by the cleavage of the urea side chain to generate 4-isopropylaniline(4IA). Using the same methods,we also proposed linuron degradation pathway in strain Pu21. That is,the amide hydrolysis of linuron resulted in the generation of intermediate metabolite 3,4-dichloroaniline(3,4-DCA). [Conclusions]Strain Pu21 has excellent degradation ability,broad substrate spectrum and great potential for the bioremediation of pesticidecontaminating soils and wastewater treatment using bioaugmentation technique.


[1] Greulich K,Hoque E,Pflugmacher S. Uptake,metabolism,and effects on detoxication enzymes of isoproturon in spawn and tadpoles of amphibians[J]. Ecotoxicology and Environmental Safety,2002,52(3):256-266.
[2] Chhokar R S,Singh S,Sharma R K. Herbicides for control of isoproturon-resistant Littleseed Canarygrass(Phalaris minor)in wheat[J]. Crop Protection,2008,27(3):719-726.
[3] Field J A,Reed R L,Sawyer T E,et al. Diuron and its metabolites in surface water and ground water by solid phase extraction and in-vial elution[J]. Journal of Agricultural and Food Chemistry,1997,45(10):3897-3902.
[4] Spliid N H,Køppen B. Occurrence of pesticides in Danish shallow ground water[J]. Chemosphere,1998,37(7):1307-1316.
[5] Thurman E M,Bastian K C,Mollhagen T. Occurrence of cotton herbicides and insecticides in playa lakes of the High Plains of West Texas[J]. Science of the Total Environment,2000,248(2):189-200.
[6] Gerecke A C,Tixier C,Bartels T,et al. Determination of phenylurea herbicides in natural waters at concentrations below 1 ng·L-1 using solid-phase extraction,derivatization,and solid-phase microextraction-gas chromatography-mass spectrometry[J]. Journal of Chromatography A,2001,930(1):9-19.
[7] Cycon M,Piotrowska-Seget Z,Kozdroj J. Linuron effects on microbiological characteristics of sandy soils as determined in a pot study[J]. Annals of Microbiology,2010,60:439-449.
[8] Lopez-Doval J C,Ricart M,Guasch H,et al. Does grazing pressure modify diuron toxicity in a biofilm community?[J]. Archives of Environmental Contamination and Toxicology,2010,58:955-962.
[9] Da-Rocha M S,Nascimento M G,Cardoso A P,et al. Cytotoxicity and regenerative proliferation as the mode of action for diuron-induced urothelial carcinogenesis in the rat[J]. Toxicological Sciences,2010,113:37-44.
[10] Katsumata H,Sada M,Nakaoka Y,et al. Photocatalytic degradation of diuron in aqueous solution by platinized TiO2[J]. Journal of Hazardous Materials,2009,171:1081-1087.
[11] Reddy P A K,Reddy P V L,Sharma V M,et al. Photocatalytic degradation of isoproturon pesticide on C,N and S Doped TiO2[J]. Journal of Water Resource and Protection,2010,2(3):235-244.
[12] Gangwar S K,Rafiquee M Z A. Kinetics of the alkaline hydrolysis of isoproturon in CTAB and NaLS micelles[J]. International Journal of Chemical Kinetics,2007,39:39-45.
[13] Vicente F,Santos A,Romero A,et al. Kinetic study of diuron oxidation and mineralization by persulphate:effects of temperature,oxidant concentration and iron dosage method[J]. Chemical Engineering Journal,2011,170:127-135.
[14] Sun J Q,Huang X,Chen Q L,et al. Isolation and characterization of three Sphingobium sp.strains capable of degrading isoproturon and cloning of the catechol 1,2-dioxygenase gene from these strains[J]. World Journal of Microbiology and Biotechnology,2009,25(2):259-268.
[15] Sørensen S R,Aamand J. Biodegradation of the phenylurea herbicide isoproturon and its metabolites in agricultural soils[J]. Biodegradation,2001,12(1):69-77.
[16] Bending G D,Lincoln S D,Sørensen S R,et al. In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH[J]. Applied and Environmental Microbiology,2003,69(2):827-834.
[17] 孙纪全,黄星,何健,等. 异丙隆降解菌 Y57 的分离鉴定及其降解特性[J]. 中国环境科学,2006,26(3):315-319.Sun J Q,Huang X,He J,et al. Isolation identification of isoproturon degradation bacterium Y57 and its degradation characteristic[J]. China Environmental Science,2006,26(3):315-319(in Chinese with English abstract).
[18] Hussain S,Devers-Lamrani M,El A N,et al. Isolation and characterization of an isoproturon mineralizing Sphingomonas sp.strain SH from a French agricultural soil[J]. Biodegradation,2011,22(3):637-650.
[19] El-Deeb B A,Soltan S M,Ali A M,et al. Detoxication of the herbicide diuron by Pseudomonas sp.[J]. Folia Microbiologica,2000,45(3):211-216.
[20] Batisson I,Pesce S,Besse-Hoggan P,et al. Isolation and characterization of diuron-degrading bacteria from lotic surface water[J]. Microbial Ecology,2007,54(4):761-770.
[21] Tixier C,Sancelme M,Ait-Aissa S,et al. Biotransformation of phenylurea herbicides by a soil bacterial strain Arthrobacter sp.N2:structure,ecotoxicity and fate of diuron metabolite with soil fungi[J]. Chemosphere,2002,46(4):519-526.
[22] Ngigi A,Getenga Z,Boga H,et al. Biodegradation of phenylurea herbicide diuron by microorganisms from long-term-treated sugarcane-cultivated soils in Kenya[J]. Toxicological and Environmental Chemistry,2011,93(8):1623-1635.
[23] Dejonghe W,Berteloot E,Goris J,et al. Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain[J]. Applied and Environmental Microbiology,2003,69(3):1532-1541.
[24] Sharma P,Chopra A,Cameotra S S,et al. Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp.PS-1[J]. Biodegradation,2010,21(6):979-987.
[25] 东秀珠,蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社,2001.Dong X Z,Cai M Y. Manual of Common System Determination Bacteriology[M]. Beijing:Science Press,2001(in Chinese).
[26] Kim O S,Cho Y J,Lee K,et al. Introducing EzTaxon-e:a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species[J]. International Journal of Systematic and Evolutionary Microbiology,2012,62:716-721.
[27] Sørensen S R,Ronen Z,Aamand J. Isolation from agricultural soil and characterization of a Sphingomonas sp.able to mineralize the phenylurea herbicide isoproturon[J]. Applied and Environmental Microbiology,2002,67(12):5403-5409.
[28] Zhang J,Hong Q,Li Q,et al. Characterization of isoproturon biodegradation pathway in Sphingobium sp.YBL2[J]. International Biodeterioration and Biodegradation,2012,70(5):8-13.
[29] Wallnöfer P. The decomposition of urea herbicides by Bacillus sphaericus,isolated from soil[J]. Weed Research,1969,9(4):333-339.
[30] Satsuma K. Mineralisation of the herbicide linuron by Variovorax sp.strain RA8 isolated from Japanese river sediment using an ecosystem model(microcosm)[J]. Pest Management Science,2010,66(8):847-852.
[31] Cullington J E,Walker A. Rapid biodegradation of diuron and other phenylurea herbicides by a soil bacterium[J]. Soil Biology and Biochemistry,1999,31(5):677-686.
[32] Sørensen S R,Rasmussen J,Jacobsen C S,et al. Elucidating the key member of a linuron-mineralizing bacterial community by PCR and reverse transcription-PCR denaturing gradient gel electrophoresis 16S rRNA gene fingerprinting and cultivation[J]. Applied and Environmental Microbiology,2005,71(7):4144-4148.
[33] Engelhardt G,Wallnöfer P R,Plapp R. Purification and properties of an aryl acylamidase of Bacillus sphaericus,catalyzing the hydrolysis of various phenylamide herbicides and fungicides[J]. Applied Microbiology,1973,26(5):709-718.
[34] Khurana J,Jackson C,Scott C,et al. Characterization of the phenylurea hydrolases A and B:founding members of a novel amidohydrolase subgroup[J]. Biochemical Journal,2009,418:431-441.
[35] Bers K,Batisson I,Proost P,et al. HylA,an alternative hydrolase for initiation of catabolism of the phenylurea herbicide linuron in Variovorax sp. strains[J]. Applied and Environmental Microbiology,2013,79(17):5258-5263.
[36] Gu T,Zhou C,Sørensen S R,et al. The novel bacterial N-demethylase PdmAB is responsible for the initial step of N,N-dimethyl-substituted phenylurea herbicide degradation[J]. Applied and Environmental Microbiology,2013,79(24):7846-7856.
[37] Yan X,Gu T,Yi Z,et al. Comparative genomic analysis of isoproturon-mineralizing sphingomonads reveals the isoproturon catabolic mechanism[J]. Environmental Microbiology,2016,18(12):4888-4906.


 YE Ming,LIU Ning,YUAN Huai-bo,et al.Screening and characterization of 2,4-dichlorophenol-degrading strains[J].Journal of Nanjing Agricultural University,2007,30(4):144.[doi:10.7685/j.issn.1000-2030.2007.04.030]
 SU Yu,CAI Tianming.Isolation and identification of a bromoxynil degradation strain and its degradation characteristics[J].Journal of Nanjing Agricultural University,2014,37(4):97.[doi:10.7685/j.issn.1000-2030.2014.04.014]


更新日期/Last Update: 2017-07-07