[1]文锴,王远,胡蝶,等.不结球白菜BcOPR3基因的克隆与功能分析[J].南京农业大学学报,2017,40(5):804-811.[doi:10.7685/jnau.201612018]
 WEN Kai,WANG Yuan,HU Die,et al.Cloning and expression analysis of BcOPR3 gene in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2017,40(5):804-811.[doi:10.7685/jnau.201612018]
点击复制

不结球白菜BcOPR3基因的克隆与功能分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年5期
页码:
804-811
栏目:
OA栏目
出版日期:
2017-09-20

文章信息/Info

Title:
Cloning and expression analysis of BcOPR3 gene in non-heading Chinese cabbage
作者:
文锴 王远 胡蝶 袁敬平 侯喜林 李英
南京农业大学作物遗传与种质创新国家重点实验室/农业部华东地区园艺作物生物学与种质创新重点实验室/南京农业大学园艺学院, 江苏 南京 210095
Author(s):
WEN Kai WANG Yuan HU Die YUAN Jingping HOU Xilin LI Ying
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
不结球白菜BcOPR3克隆亚细胞定位RT-qPCR
Keywords:
Brassica campestris ssp. chinensis MakinoBcOPR3clonesubcellular locationRT-qPCR
分类号:
S634.3
DOI:
10.7685/jnau.201612018
摘要:
[目的]12-氧-植物二烯酸还原酶(12-oxo-phytodienoic acid reductase,OPR)是茉莉酸生物合成途径的关键酶,催化12-氧-植物二烯(OPDA)还原反应生成茉莉酸化合物,广泛参与植物生长过程中的防御系统。本文旨在克隆和研究不结球白菜BcOPR3基因,研究其对信号分子和非生物胁迫应答的影响。[方法]对不结球白菜OPR3基因进行克隆、生物信息分析、亚细胞定位,并对其在霜霉病菌、脱落酸(ABA)、茉莉酸(JA)、水杨酸(SA)、机械伤害、低温和热激胁迫下的表达水平进行了分析。[结果]BcOPR3在2个不结球白菜品种中的序列一致,其BcOPR3蛋白与同科油菜(Brassica napus)的同源性高达98%,进化关系与之最相近;亚细胞定位结果显示BcOPR3定位在细胞膜上;实时荧光定量PCR(RT-qPCR)检测结果表明,不结球白菜霜霉病菌、ABA、JA、SA、机械伤害、低温和热激胁迫均能诱导BcOPR3基因表达。霜霉病菌侵染下,BcOPR3在抗性自交系‘苏州青’和感病自交系‘矮脚黄’中存在差异表达,并且在抗病自交系中表达量较高。[结论]从不结球白菜克隆得到的BcOPR3,通过表达分析发现,BcOPR3可能存在对非生物胁迫的共响应,且在不结球白菜中该基因是在细胞膜上起作用。在非生物胁迫下,基因具有不同的应答模式,抗性自交系BcOPR3基因的高表达是其具有更高抗性的主要原因。
Abstract:
[Objectives]The 12-oxo-phytodienoic acid reductase(OPR)is a key enzyme in the biosynthesis pathway of jasmonic acid,which catalyzes the reduction of 12-oxo-phytodienoic acid to produce jasmonic acid compounds,and it is widely involved in the process of plant growth and defense system. Cloning and characterization of BcOPR3 from non-heading Chinese cabbage is significant for researching its effect on the responses of signal molecules and abiotic stress.[Methods]To explore the function of the OPR3 gene in non-heading Chinese cabbage,BcOPR3 was cloned and bioinformatics analysis was conducted. The sub-cellular localization was researched. The expression level of BcOPR3 was analyzed under Hyaloperonospora parasitica,abscissic acid(ABA),jasmonic acid(JA),salicylic acid(SA),mechanical injury,hypothermia and heat shock stress treatments.[Results]The sequence of BcOPR3 was consistent in two kinds of non-heading Chinese cabbage. The homology between Brassica campestris ssp.chinensis Makino and Brassica napus was up to 98%,based on the close relationship. BcOPR3 gene was verified to be located in the cytoplasm. RT-qPCR analysis showed that Hyaloperonospora parasitica,ABA,JA,SA,mechanical injury,hypothermia and heat shock stress induced the expression of BcOPR3. The BcOPR3 gene had a different expression between resistant line ‘Suzhouqing’ and susceptible inbred line ‘Aijiaohuang’ ,and it had a higher expression on the ‘Suzhouqing’ than the ‘Aijiaohuang’ under downy mildew infection.[Conclusions]The BcOPR3 gene may co-respond to abiotic stress and the gene plays an important role in the cytoplasm. The high transcription level of BcOPR3 gene is an important reason for the resistance of disease resistant varieties to downy mildew.

参考文献/References:

[1] 侯喜林. 不结球白菜育种研究新进展[J]. 南京农业大学学报,2003,26(4):111-115. DOI:10.7685/j.issn.1000-2030.2003.04.026. Hou X L. Advances in breeding of non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2003,26(4):111-115(in Chinese with English abstract).
[2] 刘世拓,肖栋,许玉超,等. 不结球白菜过氧化还原蛋白基因Brc2-Cys Prx的克隆和表达分析[J]. 南京农业大学学报,2017,40(1):40-47. DOI:10.7685/jnau.201603040. Liu S T,Xiao D,Xu Y C,et al. Clone and expression analysis of Brc2-Cys Prx gene from non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2017,40(1):40-47(in Chinese with English abstract).
[3] 蒋科技,皮妍,侯嵘.植物内源茉莉酸类物质的生物合成途径及其生物学意义[J]. 植物学报,2010,45(2):137-148. Jiang K J,Pi Y,Hou R,et al. Jasmonate biosynthetic pathway:its physiological role and potential application in plant secondary metabolic engineering[J]. Chinese Bulletin of Botany,2010,45(2):137-148(in Chinese with English abstract).
[4] Liechti R,Farmer E E. The jasmonatepathway[J]. Science,2002,296(5573):1649-1650.
[5] Zavala J A,Baldwin I T. Jasmonic acid signaling and herbivore resistance traits constrain regrowth after herbivore attack in Nicotiana attenuata[J]. Plant Cell Environ,2006,29:1751-1760.
[6] Kniskern J M,Traw M B,Bergelson J. Salicylic acid and jasmonic acid signaling defense pathways reduce natural bacterial diversity on Arabidopsis thaliana[J]. Mol Plant Microbe,2007,20:1512-1522.
[7] Hu Y R,Jiang L Q,Wang F,et al. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor 1 cascade and freezing tolerance in Arabidopsis[J]. Plant Cell,2013,25:2907-2924.
[8] Strassner J,Schaller F,Frick U B,et al. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response[J]. The Plant Journal,2002,32:585-601.
[9] Sobajima H,Takeda M,Sugimori M,et al. Cloning and characterization of a jasmonic acid responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells[J]. Planta,2003,216:692-698.
[10] Schaller F,Hennig P,Weiler E W. 12-oxophytodienoate-10,11-reductase:occurrence of two isoenzymes of different specificity against stereoisomers of 12-oxophytodienoicn acid[J]. Plant Physiol,1998,118:1345-1351.
[11] Schaller F,Biesgen C,Mussig C,et al. 12-oxophytodienoate reductase 3(OPR3)is the isoenzyme involved in jasmonate biosynthesis[J]. Planta,2000,210:979-984.
[12] Strassner J,Furholz A,Macheroux P,et al. A homolog of old yellow enzyme in tomato:spectral properties and substrate specificity of the recombinant protein[J]. J Biol Chem,1999,274:35067-35073.
[13] Agrawa G K,Tamogami S,Han O,et al. Rice octadecanoid pathway[J]. Biochem Biophys Res Commun,2004,317:1-15.
[14] McConn M,Creelman R A,Bell E,et al. Jasmonate is essential for insect defense in Arabidopsis[J]. Proc Natl Acad Sci USA,1997,94:5473-5477.
[15] 刘丽,李姿,马雪莲,等. 外源水杨酸处理对活血丹中次生代谢产物积累的影响[J]. 南京农业大学学报,2016,39(3):379-385. DOI:10.7685/jnau.201508041. Liu L,Li Z,Ma X L,et al. Effect of salicylic acid on the accumulation of bioactive compounds in Glechoma longituba[J]. Journal of Nanjing Agricultural University,2016,39(3):379-385(in Chinese with English abstract).
[16] Reymond P,Weber H,Damond M,et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis[J]. Plant Cell,2000,12:707-720.
[17] Schenk P M,Kazan K,Wilson I,et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. Proc Natl Acad Sci USA,2000,97:11655-11660.
[18] Hermsmeier D,Schittko U,Baldwin I T. Molecular interactions between the specialist herbivore Manduca sexta(Lepidoptera,Sphingidae)and its natural host Nicotiana attenuata.Ⅰ. Large scale changes in the accumulation of growth-and defense-related plant mRNAs[J]. Plant Physiol,2001,125:683-700.
[19] Zhang J L,Carl S,Nasser Y,et al. Genomic analysis of the 12-oxo-phytodienoic acid reductase gene family of Zea mays[J]. Plant Mol Biol,2005,59:323-343.
[20] Matsui H,Nakamura G,Ishiga Y,et al. Structure and expression of 12-oxophytodienoate reductase(subgroupⅠ)genes in pea,and characterization of the oxidoreductase activities of their recombinant products[J]. Mol Genet Genomics,2004,271:1-10.
[21] Breithaupt C,Kurzbauer R,Lilie H,et al. Crystal structure of 12-oxophytodienoate reductase 3 from tomato:self-inhibition by dimerization[J]. Proc Natl Acad Sci USA,2006,103:14337-14342.
[22] Sobajima H,Takeda M,Sugimori M,et al. Cloning and characterization of a jasmonic acid-responsive gene encoding 12-oxophytodienoic acid reductase in suspension-cultured rice cells[J]. Planta,2003,216:692-698.
[23] Agrawal G K,Jwa N S,Shibato J,et al. Diverse environmental cues transiently regulate OsOPR1 of the"octadecanoid pathway"revealing its importance in rice defense/stress and development[J]. Biochem Biophys Res Commun,2003,310:1073-1082.
[24] 张占芳,李睿,仲天庭,等. 水稻细胞质雄性不育系和保持系对外源茉莉酸响应以及内源茉莉酸合成的差异[J]. 南京农业大学学报,2014,37(6):7-12. DOI:10.7685/j.issn.1000-2030.2014.06.002. Zhang Z F,Li R,Zhong T T,et al. Differences of jasmonic acid sensitivity and endogenous jasmonic acid synthesis between cytoplasmic malesterile line and its maintainer line in rice[J]. Journal of Nanjing Agricultural University,2014,37(6):7-12(in Chinese with English abstract).
[25] Mussig C,Biesgen C,Lisso J,et al. A novel stress-inducible 12-oxophytodienoate reductase from Arabidopsis thaliana provides a potential link between brassinosteroid-action and jasmonic acid synthesis[J]. J Plant Physiol,2000,157:143-152.
[26] Halim V A,Altmann S,Ellinger D,et al. PAMP-induced defense responses in potapo require both salicylic acid and jasmonic acid[J]. Plant Journal,2009,57:230-242.
[27] Becker W,Apel K. Isolation and characterization of a cDNA encoding a naval Jasmonate-induced protein of barley(Hordeumvu lgare L.)[J]. Plant Molecular Biology,1992,19:1065-1067.
[28] Xu Y,Chang P F,Liu D,et al. Plant defense genes are synergistically induced byethylene and methyl jasmonate[J]. Plant Cell,1994,6:1077-1085.
[29] Chaudhry B,Mueller U F,Cameron M V,et al. The barley 60 kD jasmonate-induced protein(JIP60)isa noval ribosome-inactivating protein[J]. Plant Journal,1994,6:815-824.
[30] Wang S Y. Methyl jasmonate reduces water stress in strawberry[J]. Journal of Plant Growth Regulation,1999,18(3):127-134.
[31] Dombrowski J M. Salt stress activation of wound-related genes in tomato plants[J]. Plant Physiol,2003,132:2098-2107.
[32] Shinozake Y,Yamaguchi S K. Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signalling pathways[J]. Current Opinion in Plant Biology,2000,3:217-223.

相似文献/References:

[1]张爱芬,王立,侯喜林,等.不结球白菜S 位点受体激酶基因片段的克隆与表达分析[J].南京农业大学学报,2011,34(3):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
 ZHANG Ai-fen,WANG Li,HOU Xi-lin,et al.Cloning and expression analysis of SRK gene fragment in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(5):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
[2]黄建凤,徐小梦,沈其荣,等.2个不结球白菜品种硝酸盐累积差异的生理机制[J].南京农业大学学报,2011,34(1):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
 HUANG Jian-feng,XU Xiao-meng,SHEN Qi-rong,et al.Physiological mechanisms for the difference of nitrate accumulation in two cultivars of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(5):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
[3]陈以博,侯喜林,陈晓峰.不结球白菜幼苗耐热性机制初步研究[J].南京农业大学学报,2010,33(1):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
 CHEN Yi-bo,HOU Xi-lin,CHEN Xiao-feng.Studies on heat tolerance mechanism of non-heading Chinese cabbage(Brassica campestris ssp.chinensis)[J].Journal of Nanjing Agricultural University,2010,33(5):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
[4]郑佳秋,侯喜林,朱红芳.热激诱导不结球白菜热激蛋白合成与耐冷性分析[J].南京农业大学学报,2010,33(2):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
 ZHENG Jia-qiu,HOU Xi-lin,ZHU hong-fang.Induction of heat shock protein synthesis and chilling tolerance in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(5):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
[5]班青宇,耿建峰,侯喜林,等.不结球白菜叶片脯氨酸与可溶性蛋白含量的QTL分析[J].南京农业大学学报,2010,33(2):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
 BAN Qing-yu,GENG Jian-feng,HOU Xi-lin,et al.QTL mapping for proline and soluble protein content of leaves in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(5):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
[6]郝慧楠,王倩,侯喜林,等.不结球白菜主要农艺性状的分离分析[J].南京农业大学学报,2010,33(4):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
 HAO Hui-nan,WANG Qian,HOU Xi-lin,et al.Segregation analysis of the main agronomic characters of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(5):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
[7]荣子龙,侯喜林,史公军,等.不结球白菜晚抽薹BcFLC1基因克隆及表达分析[J].南京农业大学学报,2010,33(6):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
 RONG Zi-long,HOU Xi-lin,SHI Gong-jun,et al.Cloning and expression analysis of late bolting BcFLC1 gene from Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(5):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
[8]申娜娜,侯喜林.不结球白菜感染霜霉病菌后防御物质及酶的变化[J].南京农业大学学报,2009,32(1):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
 SHEN Shan-na,HOU Xi-lin.Changes of protective substances and enzymes in non-heading Chinese cabbage after infection by downy mildew[J].Journal of Nanjing Agricultural University,2009,32(5):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
[9]成妍,班青宇,王倩,等.不结球白菜游离小孢子培养及再生植株的倍性鉴定[J].南京农业大学学报,2009,32(2):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
 CHENG Yan,BAN Qing-yu,WANG Qian,et al.Isolated microspore culture and ploidy identification of microspore-derived plants in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2009,32(5):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
[10]刘琳,侯喜林,王利英,等.不结球白菜感染芜菁花叶病毒后4种防御酶活性变化及其抗病相关性[J].南京农业大学学报,2009,32(3):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]
 LIU Lin,HOU Xi-lin,WANG Li-ying,et al.Changes of four protective enzyme activities and relationships to resistance in non-heading Chinese cabbage after infection of Turnip mosaic virus[J].Journal of Nanjing Agricultural University,2009,32(5):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]

备注/Memo

备注/Memo:
收稿日期:2016-12-11。
基金项目:国家自然科学基金项目(31272173,31471886)
作者简介:文锴,硕士研究生。
通信作者:李英,教授,博导,主要从事蔬菜遗传育种和分子生物学研究,E-mail:yingli@njau.edu.cn
更新日期/Last Update: 2017-09-23