[1]庄丽芳,亓增军.植物染色体诱变研究与应用进展[J].南京农业大学学报,2018,41(1):3-17.[doi:10.7685/jnau.201705036]
 ZHUANG Lifang,QI Zengjun.Recent advances in inducing and application of plant chromosome aberrations[J].Journal of Nanjing Agricultural University,2018,41(1):3-17.[doi:10.7685/jnau.201705036]
点击复制

植物染色体诱变研究与应用进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年1期
页码:
3-17
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
Recent advances in inducing and application of plant chromosome aberrations
作者:
庄丽芳 亓增军
南京农业大学作物遗传与种质创新国家重点实验室, 江苏 南京 210095
Author(s):
ZHUANG Lifang QI Zengjun
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
关键词:
植物染色体工程物理诱变化学诱变遗传诱变
Keywords:
plantchromosome engineeringphysical mutagenesischemical mutagenesisgenetic mutagenesis
分类号:
Q343.2
DOI:
10.7685/jnau.201705036
摘要:
植物染色体工程是通过人工诱致染色体变异进行植物改良的技术。染色体变异在外源基因转移和利用、染色体倍性操作、反向育种等方面发挥着重要作用,促进了染色体基因组学、物理作图和染色体生物学研究。基因组学、分子标记和染色体鉴定技术的发展进一步促进了化学、物理和遗传诱变的深入研究和应用,不断创造和鉴定出更多具有不同用途的染色体变异,为植物改良和遗传研究提供了新工具。本文综述了植物染色体诱变研究与应用进展,并对存在的问题和发展趋势进行了讨论,为有效开展染色体工程提供参考。
Abstract:
Chromosome engineering refers to a kind of plant improvement technology in which chromosome aberrations are artificially induced. Chromosome aberrations play significant roles not only in transfering and utilization of alien genes,chromosome ploidy manipulation and reverse breeding,but also in chromosome genomics,physical mapping and chromosome biology.With the development of plant genomics,molecular markers and chromosome identification technology,more chromosome aberrations with different purposes have been induced by chemical,physical and biological methods and identified for both plant improvement and genetic study. Recent progress of such researches was summarized and problems and prospects of induction and application of plant chromosome aberrations were discussed.

参考文献/References:

[1] Appels R,Morris R,Gill B S,et al. Chromosome Biology[M]. Boston/Dordrecht/London:Kluwer Academic Publishers,1998:9,93-95.
[2] Langie S A S,Koppen G,Desaulniers D,et al. Causes of genome instability:the effect of low dose chemical exposures in modern society[J]. Carcinogenesis,2015,36(S1):61-88.
[3] Dudits D,Török K,Cseri A,et al. Response of organ structure and physiology to autotetraploidization in early development of energy willow Salix viminalis[J]. Plant Physiology,2016,170(3):1504-1523.
[4] Natarajan A T,Upadhya M D. Localized chromosome breakage induced by ethyl-methane-sulfonate and hydroxylamine in Vicia faba[J]. Chromosoma(Berl.),1964,15(2):156-169.
[5] Wang T L,Uauy C,Robson F,et al. TILLING in extremis[J]. Plant Biotechnology Journal,2012,10(7):761-772.
[6] Borrill P,Adamski N,Uauy C. Genomics as the key to unlocking the polyploid potential of wheat[J]. New Phytologist,2015,208(4):1008-1022.
[7] Sidhu G,Mohan A,Zheng P,et al. Sequencing-based high throughput mutation detection in bread wheat[J]. BMC Genomics,2015,16:962.
[8] Acevedo-Garcia J,Spencer D,Thieron H,et al. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach[J]. Plant Biotechnology Journal,2016,15(3):367-378.
[9] Zhai S,Li G,Sun Y,et al. Genetic analysis of phytoene synthase 1(Psy1) gene function and regulation in common wheat[J]. BMC Plant Biology,2016,16:228.
[10] Karimi-Ashtiyani R,Ishii T,Niessen M,et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants[J]. Proc Natl Acad Sci USA,2015,112(36):11211-11216.
[11] Serrat X,Esteban R,Guibourt N,et al. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations[J]. Plant Methods,2014,10(1):5.
[12] Lu Y,Xing L,Xing S,et al. Characterization of a putative new semi-dominant reduced height gene,Rht_NM9,in wheat(Triticum aestivum L.)[J]. J Genet Genomics,2015,42(12):685-698.
[13] Xu T,Bian N,Wen M,et al. Characterization of a common wheat(Triticum aestivum L.) high-tillering dwarf mutant[J]. Theor Appl Genet,2017,130(3):483-494.
[14] Mishra A,Singh A,Sharma M,et al. Development of EMS-induced mutation population for amylose and resistant starch variation in bread wheat(Triticum aestivum) and identification of candidate genes responsible for amylose variation[J]. BMC Plant Biol,2016,16:217.
[15] Kihlman B A,Odmark G.Deoxyribonucleic acid synthesis and the production of chromosomal aberrations by streptonigrin,8-ethoxycaffeine and 1,3,7,9-tetramethyluric acid[J]. Mutation Research,1965,2(6):494-505.
[16] Ramanna M S,Natarajan A T. Chromosome breakage induced by alkyl-alkane-sulfonates under different physical treatment conditions[J]. Chromosoma,1966,18(1):44-59.
[17] Natarajan A T,Ahnströn G. Heterochromatin and chromosome aberrations[J]. Chromosoma(Berl.),1969,28(1):48-61.
[18] Andersson H C,Kihlman B A. Localization of chemically induced chromosomal aberrations in three different karyotypes of Vicia faba[J]. Hereditas,1987,107(1):15-25.
[19] Mateos S,Piñero J,Ortiz T,et al. G2 effects of DNA-repair inhibitors on chromatid-type aberrations in root-tip cells treated with maleic hydrazide and mitomycin-C[J]. Mutation Research,1989,226(2):115-120.
[20] Whittaker S G,Moser S F,Maloney D H,et al. The detection of mitotic and meiotic chromosome gain in the yeast Saccharomyces cerevisiae:effects of methyl benzimidazol-2-yl carbamate,methyl methanesulfonate,ethyl methanesulfonate,dimethyl sulfoxide,propionitrile and cyclophosphamide monohydrate[J]. Mutation Research,1990,242(3):231-258.
[21] Kanaya N,Gill B S,Grover I S,et al. Vicia faba chromosomal aberration assay[J]. Mutation Research,1994,310(2):231-247.
[22] Rank J,Nielsen M H. Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl-N-nitrosourea,maleic hydrazide,sodium azide,and ethyl methanesulfonate[J]. Mutation Research,1997,390(1/2):121-127.
[23] Murín G,Micieta K. Pre-replication recovery from methyl methanesulphonate induced chromosomal damage in Vicia faba seeds[J]. Biologia Plantarum,1997,39(4):523-529.
[24] 杨晓玲,郭金耀.秋水仙碱诱发玉米变异特性的追踪研究[J]. 遗传,2003,25(6):700-702.
Yang X L,Guo J Y. Study on variation specificity of maize induced by colchicine[J]. Hereditas(Beijing),2003,25(6):700-702(in Chinese with English abstract).
[25] Peng Y,Wang Z,Cheng L,et al. Effect of phosphoric amide herbicide APM on the structure and protein composition of chromosome in Triticum durum[J]. Plant Production Science,2003,6(2):134-138.
[26] Juchimiuk J,Hering B,Maluszynska J. Multicolour FISH in ananalysis of chromosome aberrations induced by N-nitroso-N-methylurea and maleic hydrazide in barley cells[J]. J Appl Genet,2007,48(2):99-106.
[27] 黄海泉,江帆,尹风英,等. 甲基胺草磷诱导蚕豆染色体结构与蛋白质组分变化[J]. 农业环境科学学报,2007,26(5):1806-1811.
Huang H Q,Jiang F,Yin F Y,et al. Variation of chromosome structure and protein composition in Vicia faba induced by amiprophose-methyl[J]. Journal of Agro-Environment Science,2007,26(5):1806-1811(in Chinese with English abstract).
[28] 刘艳阳,梅鸿献,崔承齐,等. EMS、NaN360Co γ-射线处理对芝麻根尖的细胞学效应[J]. 河南农业科学,2012,41(12):47-51.
Liu Y Y,Mei H X,Cui C Q,et al. Cytological effects induced by EMS,NaN3 and 60Co γ-ray on sesame seed[J]. Journal of Henan Agricultural Sciences,2012,41(12):47-51(in Chinese with English abstract).
[29] Kwasniewska J,Kwasniewski M. Comet-FISH for the evaluation of plant DNA damage after mutagenic treatments[J]. J Appl Genetics,2013,54(4):407-415.
[30] Gautam N,Kumar G. Consequences of colchicine induced intermeiocyte connections in Helianthus annuus[J]. Caryologia,2013,66(1):65-69.
[31] 敬樊,王亮明,武军,等. 利用甲基磺酸乙酯(EMS) 诱导小麦-华山新麦草染色体易位的研究[J]. 农业生物技术学报,2015,23(5):561-570.
Jing F,Wang L M,Wu J,et al. Study on inducing chromosome translocation of wheat(Triticum aestivum) -Psathyrostachys huashanica using ethylmethylsulfone(EMS)[J]. Journal of Agricultural Biotechnology,2015,23(5):561-570(in Chinese with English abstract).
[32] Temel A,Gozukirmizi N. Cytotoxic effects of metaphase-arresting methods in barley[J]. Cytology and Genetics,2015,49(6):382-387.
[33] Sega G A. A review of the genetic effects of ethyl methanesulfonate[J]. Mutation Research,1984,134:113-142.
[34] Itani O A,Flibotte S,Duma K J,et al. Chromoanasynthetic genomic rearrangement identified in a N-ethyl-N-nitrosourea(ENU) mutagenesis screen in Caenorhabditis elegans[J]. Genes/Genomes/Genomics,2016,6:351-356.
[35] Espada J,Esteller M. DNA methylation and the functional organization of the nuclear compartment[J]. Semin Cell Dev Biol,2010,21(2):238-246.
[36] Vorontsova M,Shaw P,Reader S,et al. Effect of 5-azacytidine and trichostatin A on somatic centromere association in wheat[J]. Genome,2004,47:399-403.
[37] Baubec T,Pecinka A,Rozhon W,et al. Effective,homogeneous and transient interference with cytosine methylation in plant genomic DNA by zebularine[J]. The Plant Journal,2009,57(3):542-554.
[38] Cheng J C,Matsen C B,Gonzales F A,et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine[J]. J Natl Cancer Inst,2003,95(5):399-409.
[39] Cheng J C,Weisenberger D J,Gonzales F A,et al. Continuous zebularine treatment effectively sustains demethylation in human bladder cancer cells[J]. Mol Cell Biol,2004,24(3):1270-1278.
[40] Cheng J C,Yoo C B,Weisenberger D J. Preferential response of cancer cells to zebularine[J]. Cancer Cell,2004,6(2):151-158.
[41] Andrade A F,Borges K S,Suazo V K,et al. The DNA methyltransferase inhibitor zebularine exerts antitumor effects and reveals BATF2 as a poor prognostic marker for childhood medulloblastoma[J]. Invest New Drugs,2016,35(1):26-36.
[42] Cho S W,Ishii T,Matsumoto N,et al. Effects of cytidine analogue zebularine on wheat mitotic chromosomes[J]. Chromosome Sci,2011,14:23-28.
[43] Ma X,Wang Q,Wang Y,et al. Chromosome aberrations induced by zebularine in triticale[J]. Genome,2016,59(7):485-492.
[44] Du P,Zhuang L,Wang Y,et al. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes[J]. Genome,2017,60(2):93-103.
[45] Muller H J. Artificial transmutation of the gene[J]. Science,1927,66(1699):84-87.
[46] Stadler L J. Mutations in barley induced by X-rays and radium[J]. Science,1928,68(1756):186-187.
[47] Jiang J,Friebe B,Gill B S. Recent advances in alien gene transfer in wheat[J]. Euphytica,1994,73(3):199-212.
[48] Chen P,Qi L,Zhou B,et al. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew[J]. Theor Appl Genet,1995,91(6):1125-1128.
[49] 刘文轩,陈佩度,刘大钧. 利用花粉辐射诱发普通小麦与大赖草染色体易位的研究[J]. 遗传学报,2000,27(1):44-49.
Liu W X,Chen P D,Liu D J.Studies of the development of Triticum aestivum-Leymus racemosus translocastion lines by pollen inradiation[J]. Journal of Genetics and Genomics,2000,27(1):44-49(in Chinese with English abstract).
[50] Chen P,Liu W,Yuan J,et al. Development and characterization of wheat-Leymus racemosus translocation lines with resistance to Fusarium head blight[J]. Theor Appl Genet,2005,111(5):941-948.
[51] Bie T D,Cao Y P,Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum-Haynaldia villosa amphiploid[J]. J Integr Plant Biol,2007,49(11):1619-1626.
[52] Cao Y P,Bie T D,Wang X E,et al. Induction and transmission of wheat-Haynaldia villosa chromosomal translocations[J]. J Genet Genomics,2009,36(5):313-320.
[53] 张伟. 簇毛麦染色体分子核型及染色体结构变异体库的构建[D]. 南京:南京农业大学,2012.
Zhang W. Construction of molecular karyotype and strcutural aberrance library of Haynaldia villosa chromosomes[D]. Nanjing:Nanjing Agricultural University,2012(in Chinese with English abstract).
[54] Zhang R,Cao Y,Wang X,et al. Development and characterization of a Triticum aestivum-H.villosa T5VS·5DL translocation line with soft grain texture[J]. Journal of Cereal Science,2010,51:220-225.
[55] Zhang R,Sun B,Chen J,et al. Pm55,a developmental-stage and tissue-specifc powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat[J]. Theor Appl Genet,2016,129(10):1975-1984.
[56] Zhang R Q,Zhang M Y,Wang X E,et al. Introduction of chromosome segment carrying the seed storage protein genes from chromosome 1V of Dasypyrum villosum showed positive effect on bread-making quality of common wheat[J]. Theor Appl Genet,2014,127(3):523-533.
[57] Zhang R Q,Hou F,Feng Y G,et al. Characterization of a Triticum aestivum-Dasypyrum villosum T2VS·2DL translocation line expressing a longer spike and more kernels traits[J]. Theor Appl Genet,2015,128(12):2415-2425.
[58] Chen S W,Chen P D,Wang X E. Inducement of chromosome translocation with small alien segments by irradiating mature female gametes of the whole arm translocation line[J]. Sci China Ser C:Life Sci,2008,51(4):346-352.
[59] Chen P,You C,Hu Y,et al. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat[J]. Mol Breeding,2013,31(2):477-484.
[60] Zheng Q,Li B,Mu S M,et al. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat[J]. Genome,2006,49(9):1109-1114.
[61] Pu J,Wang Q,Shen Y,et al. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations[J]. Theor Appl Genet,2015,128(7):1319-1328.
[62] Zhuang L F,Sun L,Li A X,et al. Identification and development of diagnostic markers for a powdery mildew resistance gene on chromosome 2R of Chinese rye cultivar Jingzhouheimai[J]. Mol Breed,2011,27(4):455-465.
[63] Zhuang L,Liu P,Liu Z,et al. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat[J]. Mol Breed,2015,35(6):133.
[64] Song L,Lu Y,Zhang J,et al. Cytological and molecular analysis of wheat-Agropyron cristatum translocation lines with 6P chromosome fragments conferring superior agronomic traits in common wheat[J]. Genome,2016,59(10):840-850.
[65] Song L,Lu Y,Zhang J,et al. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background[J]. Theor Appl Genet,2016,129(5):1023-1034.
[66] Li H,Lü M,Song L,et al. Production and identification of wheat-Agropyron cristatum 2P translocation lines[J]. PLoS ONE,2016,11(1):e0145928.
[67] Li H,Jiang,B,Wang J,et al. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P[J]. Theor Appl Genet,2017,130(1):109-121.
[68] Goss S J,Harris H. New method for mapping genes in human chromosomes[J]. Nature,1975,255(5511):680-684.
[69] Cox D R,Burmeister M,Price E R,et al. Radiation hybrid mapping:a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes[J]. Science,1990,250(4978):245-250.
[70] Kynast R G,Okagaki R J,Galatowitsch M W,et al. Dissecting the maize genome by using chromosome addition and radiation hybrid lines[J]. Proc Natl Acad Sci USA,2004,101(26):9921-9926.
[71] Wardrop J,Snape J,Powell W,et al. Constructing plant radiation hybrid panels[J]. Plant J,2002,31(2):223-228.
[72] Wardrop J,Fuller J,Powell W,et al. Exploiting plant somatic radiation hybrids for physical mapping of expressed sequence tags[J]. Theor Appl Genet,2004,108(2):343-348.
[73] Gao W,Chen Z J,Yu J Z,et al. Wide cross whole genome radiation hybrid mapping of cotton(Gossypium hirsutum L.)[J]. Genetics,2004,167(3):1317-1329.
[74] Kalavacharla V,Hossain K,Gu Y,et al. High-resolution radiation hybrid map of wheat chromosome 1D[J]. Genetics,2006,173(2):1089-1099.
[75] Choulet F,Alberti A,Theil S,et al. Structural and functional partitioning of bread wheat chromosome 3B[J]. Science,2014,345(6194). DOI:10.1126/science.1249721.
[76] Tiwari V K,Heesacker A,Riera-Lizarazu O,et al. A whole-genome,radiation hybrid mapping resource of hexaploid wheat[J]. The Plant Journal,2016,86(2):195-207.
[77] Endo T R. The gametocidal chromosome as a tool for chromosome manipulation in wheat[J]. Chromosome Research,2007,15(1):67-75.
[78] Friebe B,Kynast R G,Gill B S. Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat[J]. Chromosome Research,2000,8(6):501-511.
[79] Tsujimoto H,Yamada T,Sasakuma T. Molecular structure of a wheat chromosome end healed after gametocidal gene-induced breakage[J]. Proc Natl Acad Sci USA,1997,94(7):3140-3144.
[80] Endo T R,Gill B S. The deletion stocks of common wheat[J]. J Hered,1996,87(4):295-307.
[81] 李集临,徐香玲,徐萍,等. 利用中国春-山羊草2C二体附加系与中国春-偃麦草5E二体附加系杂交诱发染色体易位和缺失[J]. 遗传学报,2003,30(4):345-349.
Li J L,Xu X L,Xu P,et al. Inducing chromosome translocation and deletious by Chinese Spring-Agilops 2C disomic addition×Chinese Spring-Elytriga 5E disomic addition[J]. Acta Genetica Sinica,2003,30(4):345-349(in Chinese with English abstract).
[82] 袁建华,陈佩度,刘大钧.利用杀配子染色体创造普通小麦-大赖草异易位系[J]. 中国科学(C辑):生命科学,2003,33(2):110-116,193.
Yuan J H,Chen P D,Liu D J. Using gametocidal chromosome to create common wheat-Leymus racemosus translocation lines[J]. Science China(Series C):Life Science,2003,33(2):110-116,193(in Chinese with English abstract).
[83] Qi L L,Echalier B,Chao S,et al. A chromosome bin map of 16000 expressed sequence tag loci and distribution of genes among the three genomes of polyploid wheat[J]. Genetics,2004,168(2):701-712.
[84] Serizawa N,Nasuda S,Shi F,et al. Deletion-based physical mapping of barley chromosome 7H[J]. Theor Appl Genet,2001,103(6/7):827-834.
[85] Nasuda S,Kikkawa Y,Ashida T,et al. Chromosomal assignment and deletion mapping of barley EST markers[J]. Genes Genet Syst,2005,80(5):357-366.
[86] Masoudi-Nejad A,Nasuda S,Bihoreau M T,et al. An alternative to radiation hybrid mapping for large-scale genome analysis in barley[J]. Mol Gen Genom,2005,274(6):589-594.
[87] Ashida T,Nasuda S,Sato K,et al. Dissection of barley chromosome 5H in common wheat[J]. Genes Genet Syst,2007,82(2):123-133.
[88] Sakai K,Nasuda S,Sato K,et al. Dissection of barley chromosome 3H in common wheat and a comparison of 3H physical and genetic maps[J]. Genes Genet Syst,2009,84(1):25-34.
[89] Sakata M,Nasuda S,Endo T R. Dissection of barley chromosome 4H in common wheat by the gametocidal system and cytological mapping of chromosome 4H with EST markers[J]. Genes Genet Syst,2010,85(1):19-29.
[90] Joshi G P,Nasuda S,Endo T R. Dissection and cytological mapping of barley chromosome 2H in the genetic background of common wheat[J]. Genes Genet Syst,2011,86(4):231-248.
[91] Joshi G P,Endo T R,Nasuda S. PCR and sequence analysis of barley chromosome 2H subjected to the gametocidal action of chromosome 2C[J]. Theor Appl Genet,2013,126(9):2381-2390.
[92] Tsuchida M,Fukushima T,Nasuda S,et al. Dissection of rye chromosome 1R in common wheat[J]. Genes Genet Syst,2008,83(1):43-53.
[93] Gyawali Y P,Nasuda S,Endo T R. Cytological dissection and molecular characterization of chromosome 1R derived from ‘Burgas 2’ common wheat[J]. Genes Genet Syst,2009,84(6):407-416.
[94] Gyawali Y P,Nasuda S,Endo T R. A cytological map of the short arm of rye chromosome 1R constructed with 1R dissection stocks of common wheat and PCR-based markers[J]. Cytogenet Genome Res,2010,129(3):224-233.
[95] Nasuda S,Hudakova S,Schubert I,et al. Stable barley chromosomes without centromeric repeats[J]. Proc Natl Acad Sci USA,2005,102(28):9842-9847.
[96] Martinez-Perez E,Shaw P,Moore G. The Ph1 locus is needed to ensure specific somatic and meiotic centromere association[J]. Nature,2001,411(6834):204-207.
[97] Griffiths S,Sharp R,Foote T N,et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat[J]. Nature,2006,439(7077):749-752.
[98] Dunford R P,Kurata N,Laurie D A,et al. Conservation of fine-scale DNA marker order in the genome of rice and the Triticeae[J]. Nucleic Acids Res,1995,23(14):2724-2728.
[99] Niu Z X,Klindworth D L,Friesen T L,et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering[J]. Genetics,2011,187(4):1011-1021.
[100] Zhao R,Wang H,Xiao J,et al. Induction of 4VS chromosome recombinants using the CS ph1b mutant and mapping of the wheat yellow mosaic virus resistance gene from Haynaldia villosa[J]. Theor Appl Genet,2013,126(12):2921-2930.

[101] Farkas A,Molnár I,Dulai S,et al. Increased micronutrient content(Zn,Mn) in the 3Mb(4B) wheat-Aegilops biuncialis substitution and 3Mb.4BS translocation identified by GISH and FISH[J]. Genome,2014,57(2):61-67.
[102] Millet E,Manisterski J,Ben-Yehuda P,et al. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass(Aegilops sharonensis Eig) into bread wheat(Triticum aestivum L.)[J]. Genome,2014,57(6):309-316.
[103] Rey M D,Calderón M C,Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley[J]. Front Plant Sci,2015,6:160.
[104] Guo J,Zhang X,Hou Y,et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection[J]. Theor Appl Genet,2015,128(11):2301-2316.
[105] Rey M D,Calderón M C,Rodrigo M J,et al. Novel bread wheat lines enriched in carotenoids carrying Hordeum chilense chromosome arms in the ph1b background[J]. PLoS ONE,2015,10(8):e0134598.
[106] Danilova T V,Zhang G,Liu W,et al. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat[J]. Theor Appl Genet,2017,130(3):549-556.
[107] Gill K S,Gill B S. A PCR-based screening assay of Ph1,the chromosome pairing regulator gene of wheat[J]. Crop Sci,1996,36(3):719-722.
[108] Segal G,Liu B,Vega J M,et al. Identification of a chromosome-specific probe that maps within the Ph1 deletion in common and durum[J]. Theor Appl Genet,1997,94(8):968-970.
[109] Qu L J,Foote T,Roberts M,et al. A simple PCR-based method for scoring the ph1b deletion in wheat[J]. Theor Appl Genet,1998,96(3):371-375.
[110] 王新望,赖菁茹,陈梁鸿,等. 中国春ph1b突变体的分子鉴定[J]. 中国农业科学,1998,31(5):31-34. Wang X W,Lai J R,Chen L H,et al. Molecular identification for Chinese Spring ph1b mutant[J]. Scientia Agric Sincia,1998,31(5):31-34(in Chinese with English abstract).
[111] Roberts M A,Reader S M,Dalgliesh C,et al. Induction and characterization of Ph1 wheat mutants[J]. Genetics,1999,153(4):1909-1918.
[112] Wang X,Lai J,Liu G,et al. Development of a SCAR marker for the Ph1 locus in common wheat and its application[J]. Crop Sci,2002,42(4):1365-1368.
[113] Qi L L,Friebe B,Zhang P,et al. Homoeologous recombination,chromosome engineering and crop improvement[J]. Chromosome Res,2007,15(1):3-19.
[114] Talbert P B,Masuelli R,Tyagi A P,et al. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant[J]. The Plant Cell,2002,14(5):1053-1066.
[115] Henikoff S,Ahmad K,Malik H S. The centromere paradox:stable inheritance with rapidly evolving DNA[J]. Science,2001,293(5532):1098-1102.
[116] Lermontova I,Sandmann M,Mascher M,et al. Centromeric chromatin and its dynamics in plants[J]. The Plant Journal,2015,83(1):4-17.
[117] Comai L,Maheshwari S,Marimuthu M P A. Plant centromeres[J]. Current Opinion in Plant Biology,2017,36:158-167.
[118] Laurie D A,Bennett M D. The timing of chromosome elimination in hexaploid wheat×maize crosses[J]. Genome,1989,32(6):953-961.
[119] Mochida K,Tsujimoto H,Sasakuma T. Confocal analysis of chromosome behavior in wheat×maize zygotes[J]. Genome,2004,47:199-205.
[120] Jin W W,Melo J R,Nagaki K,et al. Maize centromeres:organization and functional adaptation in the genetic background of oat[J]. The Plant Cell,2004,16(3):571-581.
[121] Sanei M,Pickering R,Kumke K,et al. Loss of centromeric histone H3(CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids[J]. Proc Natl Acad Sci USA,2011,108(33):E498-E505.
[122] Ishii T,Karimi-Ashtiyani R,Houben A. Haploidization via chromosome elimination:means and mechanisms[J]. Annu Rev Plant Biol,2016,67(1):421-438.
[123] Comai L,Henikoff S. TILLING:practical single-nucleotide mutation discovery[J]. The Plant Journal,2006,45(4):684-694.
[124] Ravi M,Chan S W L. Haploid plants produced by centromere-mediated genome elimination[J]. Nature,2010,464(7288):615-618.
[125] Ravi M,Shibata F,Ramahi J S,et al. Meiosis-specific loading of the centromere-specific histone CENH3 in Arabidopsis thaliana[J]. PLoS Genet,2011,7(6):e1002121.
[126] Tan E H,Henry I M,Ravi M,et al. Catastrophic chromosomal restructuring during genome elimination in plants[J]. eLife,2015,4:e06516.
[127] Chan S W L. Chromosome engineering:power tools for plant genetics[J]. Trends in Biotechnology,2010,28(12):605-610.
[128] Koltunow A M. Apomixis:embryo sacs and embryos formed without meiosis or fertilization in ovules[J]. The Plant Cell,1993,5(10):1425-1437.
[129] Bicknell R A,Koltunow A M. Understanding apomixis:recent advances and remaining conundrums[J]. The Plant Cell,2004,16:S228-S245.
[130] Ravi M,Marimuthu M P A,Siddiqi I. Gamete formation without meiosis in Arabidopsis[J]. Nature,2008,451(7182):1121-1124.
[131] Mercier R,Armstrong S J,Horlow C,et al. The meiotic protein SWI1 is required for axial element formation and recombination initiation in Arabidopsis[J]. Development,2003,130(14):3309-3318.
[132] d’Erfurth I,Jolivet S,Froger N,et al. Turning meiosis into mitosis[J]. PLoS Biol,2009,7(6):e1000124.
[133] Koltunow A M,Grossniklaus U. Apomixis:a developmental perspective[J]. Annu Rev Plant Biol,2003,54:547-574.
[134] Ozias-Akins P. Apomixis:developmental characteristics and genetics[J]. Critical Reviews in Plant Sciences,2006,25(2):199-214.
[135] Cai X,Xu S S,Zhu X. Mechanism of haploidy-dependent unreductional meiotic cell division in polyploid wheat[J]. Chromosoma,2010,119(3):275-285.
[136] Ramanna M S,Jacobsen E. Relevance of sexual polyploidization for crop improvement:a review[J]. Euphytica,2003,133(1):3-18.
[137] Jauhar P P,Dogramaci-Altuntepe M,Peterson T S,et al. Seedset on synthetic haploids of durum wheat:cytological and molecular investigations[J]. Crop Sci,2000,40(6):1742-1749.
[138] Honsho C,Yamamura E,Tsuruta K,et al. Unreduced 2n pollen production in ‘Nishiuchi Konatsu’ Hyuganatsu as inferred by pollen characteristics and progeny ploidy level[J]. J Japan Soc Hort Sci,2012,81(1):19-26.
[139] Filho R A B,Santos A C,Souza F H,et al. Complete asynapsis resulting in 2n pollen formation in Paspalum jesuiticum Parodi(Poaceae)[J]. Genet Mol Res,2014,13(1):255-261.
[140] Sugihara N,Higashigawa T,Aramoto D,et al. Haploid plants carrying a sodium azide-induced mutation(fdr1) produce fertile pollen grains due to first division restitution(FDR) in maize(Zea mays L.)[J]. Theor Appl Genet,2013,126(12):2931-2941.
[141] Dong C B,Suo Y J,Kang X Y. Assessment of the genetic composition of triploid hybrid Populus using SSR markers with low recombination frequencies[J]. Can J For Res,2014,44(7):692-699.
[142] Riha K,McKnight T D,Griffing L R,et al. Living with genome instability:plant responses to telomere dysfunction[J]. Science,2001,291(5509):1797-1800.
[143] Masson J E,Paszkowski J. Arabidopsis thaliana mutants altered in homologous recombination[J]. Proc Natl Acad Sci USA,1997,94(21):11731-11735.
[144] Dirks R,van Dun K,de Snoo C B,et al. Reverse breeding:a novel breeding approach based on engineered meiosis[J]. Plant Biotechnol J,2009,7:837-845.
[145] Couteau F,Belzile F,Horlow C,et al. Random chromosome segregation without meiotic arrest in both male and female meiocytes of a dmc1 mutant of Arabidopsis[J]. The Plant Cell,1999,11(9):1623-1634.
[146] Grelon M,Vezon D,Gendrot G,et al. AtSPO11-1 is necessary for efficient meiotic recombination in plants[J]. EMBO J,2001,20(3):589-600.
[147] Ow D W. Recombinase-directed plant transformation for the post-genomic era[J]. Plant Mol Biol,2002,48(1/2):183-200.
[148] Gilbertson L. Cre-lox recombination:creative tools for plant biotechnology[J]. Trends in Biotechnology,2003,21(12):550-555.
[149] Shukla V K,Doyon Y,Miller J C,et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature,2009,459(7245):437-441.
[150] Townsend J A,Wright D A,Winfrey R J,et al. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature,2009,459(7245):442-445.
[151] Zhang F,Maeder M L,Unger-Wallace E,et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc Natl Acad Sci USA,2010,107(26):12028-12033.
[152] Li T,Liu B,Spalding M H,et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat Biotechnol,2012,30(5):390-392.
[153] Belhaj K,Chaparro-Garcia A,Kamoun S,et al. Editing plant genomes with CRISPR/Cas9[J]. Current Opinion in Biotechnology,2015,32:76-84.
[154] Liu X,Xie C,Si H,et al. CRISPR/Cas9-mediated genome editing in plants[J]. Methods,2017,121/122:94-102.
[155] Maddalo D,Manchado E,Concepcion C P,et al. In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system[J]. Nature,2014,516(7531):423-427.
[156] Li Y,Park A I,Mou H,et al. A versatile reporter system for CRISPR-mediated chromosomal rearrangements[J]. Genome Biology,2015,16(1):111.
[157] Shan Q,Wang Y,Li J,et al. Targeted genome modification of crop plants using a CRISPR-Cas system[J]. Nature Biotechnology,2013,31(8):686-688.
[158] Sun Y,Zhang X,Wu C,et al. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Molecular Plant,2016,9:628-631.
[159] Liang Z,Zhang K,Chen K,et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J Genet Genomics,2014,41:63-68.
[160] Ma X,Zhang Q,Zhu Q,et al. A robust CRISPR/Cas9 system for convenient,high-efficiency multiplex genome editing in monocot and dicot plants[J]. Molecular Plant,2015,8:1274-1284.
[161] Lieberman-Lazarovich M,Levy A A. Homologous recombination in plants:an antireview[M]//Birchler J A.Plant Chromosome Engineering(Methods and Protocols).New York:Humana Press,2011:51-65.
[162] Gaeta R T,Masonbrink R E,Krishnaswamy L,et al. Synthetic chromosome platforms in plants[J]. Annu Rev Plant Biol,2012,63(1):307-330.
[163] Yu W,Han F,Gao Z,et al. Construction and behavior of engineered minichromosomes in maize[J]. Proc Natl Acad Sci USA,2007,104(21):8924-8929.
[164] Gaeta R T,Krishnaswamy L. Engineered plant minichromosomes[M]//Birchler J A.Plant Chromosome Engineering(Methods and Protocols).New York:Humana Press,2011:131-146.
[165] Nelson A D,Lamb J C,Kobrossly P S,et al. Parameters affecting telomere-mediated chromosomal truncation in Arabidopsis[J]. The Plant Cell,2011,23(6):2263-2272.
[166] Yu W,Lamb J C,Han F,et al. Telomere-mediated chromosomal truncation in maize[J]. Proc Natl Acad Sci USA,2006,103(46):17331-17336.
[167] Xu C,Cheng Z,Yu W. Construction of rice mini-chromosomes by telomere-mediated chromosomal truncation[J]. The Plant Journal,2012,70(6):1070-1079.
[168] Kapusi E,Ma L,Teo C H,et al. Telomere-mediated truncation of barley chromosomes[J]. Chromosoma,2012,121(2):181-190.
[169] Yu W,Yau Y Y,Birchler J A. Plant artificial chromosome technology and its potential application in genetic engineering[J]. Plant Biotechnology Journal,2016,14(5):1175-1182.
[170] 徐鑫,李小军,李秀全,等. 小麦骨干亲本‘洛夫林10号’1BL/1RS在衍生品种中的遗传分析[J]. 麦类作物学报,2010,30(2):221-226. Xu X,Li X J,Li X Q,et al. Inheritance of 1BL/1RS of founder parent ‘Lovrin 10’ in its progeny[J]. Journal of Triticeae Crops,2010,30(2):221-226(in Chinese with English abstract).
[171] Cao A,Xing L,Wang X,et al. Serine/threonine kinase gene Stpk-V,a key member of powdery mildew resistance gene Pm21,confers powdery mildew resistance in wheat[J]. Proc Natl Acad Sci USA,2011,108(19):7727-7732.
[172] Qi Z J,Chen P D,Liu D J,et al. A new secondary reciprocal translocation discovered in Chinese wheat[J]. Euphytica,2004,137(3):333-338.
[173] 王丹蕊. 基于寡核苷酸探针套painting的‘中国春’非整倍体高清核型及应用[D]. 南京:南京农业大学,2017. Wang D R. Development and application of high resolution karyotypes of ‘Chinese Spring’ aneuploids[D]. Nanjing:Nanjing Agricultural University,2017(in Chinese with English abstract).
[174] Durkin S G,Glover T W. Chromosome fragile sites[J]. Annu Rev Genet,2007,41:169-192.
[175] Molnár I,Cifuentes M,Schneider A,et al. Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats[J]. Annals of Botany,2011,107(1):65-76.
[176] The International Wheat Genome Sequencing Consortium(IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum) genome[J]. Science,2014,345(6194). DOI:10.1126/science.1251788.
[177] Mayer K F X,Taudien S,Martis M,et al. Gene content and virtual gene order of barley chromosome 1H[J]. Plant Physiol,2009,151(2):496-505.
[178] Mayer K F X,Martis M,Hedley P E,et al. Unlocking the barley genome by chromosomal and comparative genomics[J]. The Plant Cell,2011,23(4):1249-1263.
[179] Martis M M,Zhou R,Haseneyer G,et al. Reticulate evolution of the rye genome[J]. The Plant Cell,2013,25(10):3685-3698.
[180] Tiwari V K,Wang S,Danilova T,et al. Exploring the tertiary gene pool of bread wheat:sequence assembly and analysis of chromosome 5Mg of Aegilops geniculate[J]. The Plant Journal,2015,84(4):733-746.
[181] Steuernagel B,Periyannan S K,Hernández-Pinzón I,et al. Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture[J]. Nat Biotechnol,2016,34(6):652-655.
[182] Zheng Q,Li B,Li H,et al. Utilization of blue-grained character in wheat breeding derived from Thinopyrum poticum[J]. J Genet Genomics,2009,36(9):575-580.
[183] Zhou K,Wang S,Feng Y,et al. The 4E-ms system of producing hybrid wheat[J]. Crop Sci,2006,46(1):250-255.
[184] Hohn C E,Lukaszewski A J. Engineering the 1BS chromosome arm in wheat to remove the Rfmulti locus restoring male fertility in cytoplasms of Aegilops kotschyi,Ae. uniaristata and Ae. mutica[J]. Theor Appl Genet,2016,129(9):1769-1774.

相似文献/References:

[1]刘祖祺,林定波.植物抗寒分子生物学研究进展[J].南京农业大学学报,1993,16(01):113.[doi:10.7685/j.issn.1000-2030.1993.01.020]
 Liu Zuqi Lin Dingbo.PROGRESS IN MOLECULAR BIOLOGY OF PLANT COLD HARDINESS[J].Journal of Nanjing Agricultural University,1993,16(1):113.[doi:10.7685/j.issn.1000-2030.1993.01.020]
[2]高忠,张荣铣,方敏.植物叶片中RuBP羧化酶/加氧酶及光反应机构衰老机理的研究进展[J].南京农业大学学报,1995,18(2):26.[doi:10.7685/j.issn.1000-2030.1995.02.005]
 Gao Zhong,Zhang Rongxian,Fang din.ADVANCES ON MECHANISMS OF SENESCENCE OF RIBULOSE-1, 5-BISPHOSPHATE CARBOXYLASE/OXYGENASE AND PHOTOSYNTHETIC ELECTRON TRANSPORT CHAIN IN PLANT[J].Journal of Nanjing Agricultural University,1995,18(1):26.[doi:10.7685/j.issn.1000-2030.1995.02.005]
[3]成杰民,王作英,胡霭堂,等.植物和土壤中混合稀土元素测定的影响因素——对马尿酸偶氮氯膦比色法[J].南京农业大学学报,1999,22(3):53.[doi:10.7685/j.issn.1000-2030.1999.03.014]
 Cheng Jiemin,Wang Zuoying,Hu Aitang,et al.Factors affecting the determination of total REE of plant and soil samples by colorimetry with P lippuric acid chlorophosphorazo[J].Journal of Nanjing Agricultural University,1999,22(1):53.[doi:10.7685/j.issn.1000-2030.1999.03.014]
[4]黄方,迟英俊,喻德跃.植物MADS-box基因研究进展[J].南京农业大学学报,2012,35(5):9.[doi:10.7685/j.issn.1000-2030.2012.05.002]
 HUANG Fang,CHI Ying-jun,YU De-yue.Research advances of MADS-box genes in plants[J].Journal of Nanjing Agricultural University,2012,35(1):9.[doi:10.7685/j.issn.1000-2030.2012.05.002]
[5]周丹,赵江哲,柏杨,等.植物油脂合成代谢及调控的研究进展[J].南京农业大学学报,2012,35(5):77.[doi:10.7685/j.issn.1000-2030.2012.05.009]
 ZHOU Dan,ZHAO Jiang-zhe,BAI Yang,et al.Research advance in triacylglycerol synthesis, metabolism,and regulation in plants[J].Journal of Nanjing Agricultural University,2012,35(1):77.[doi:10.7685/j.issn.1000-2030.2012.05.009]
[6]崔为体,刘锐涛,林玉婷,等.一氧化碳:植物气体信号分子的新成员[J].南京农业大学学报,2012,35(5):87.[doi:10.7685/j.issn.1000-2030.2012.05.010]
 CUI Wei-ti,LIU Rui-tao,LIN Yu-ting,et al.Carbon monoxide:a new member of the gaseous signalling molecule in plants[J].Journal of Nanjing Agricultural University,2012,35(1):87.[doi:10.7685/j.issn.1000-2030.2012.05.010]
[7]麻浩,王爽,周亚丽.植物中钙依赖蛋白激酶的研究进展[J].南京农业大学学报,2017,40(4):565.[doi:10.7685/janu.201701036]
 MA Hao,WANG Shuang,ZHOU Yali.Research progress of calcium-dependent protein kinases in plants[J].Journal of Nanjing Agricultural University,2017,40(1):565.[doi:10.7685/janu.201701036]

备注/Memo

备注/Memo:
收稿日期:2017-05-22。
基金项目:国家自然科学基金项目(31370385,31671681)
作者简介:庄丽芳,博士,副教授,研究方向为小麦染色体工程与种质创新,E-mail:lfzhuang@njau.edu.cn。
通信作者:亓增军,博士,教授,研究方向为小麦染色体工程与种质创新,E-mail:zjqi@njau.edu.cn。
更新日期/Last Update: 1900-01-01