[1]许乐峰,许昕阳,张欢,等.水稻晚开花突变体lft1的鉴定与基因克隆[J].南京农业大学学报,2018,41(1):38-48.[doi:10.7685/jnau.201705034]
 XU Lefeng,XU Xinyang,ZHANG Huan,et al.Identification and map-based gene cloning of a late flowering mutant lft1 in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2018,41(1):38-48.[doi:10.7685/jnau.201705034]
点击复制

水稻晚开花突变体lft1的鉴定与基因克隆()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年1期
页码:
38-48
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
Identification and map-based gene cloning of a late flowering mutant lft1 in rice(Oryza sativa L.)
作者:
许乐峰1 许昕阳1 张欢1 赵志刚1 郑天慧1 赵婕妤1 曾召琼1 刘喜1 陈赛华1 万建民2
1. 南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程技术研究中心, 江苏 南京 210095;
2. 中国农业科学院作物研究所, 北京 100081
Author(s):
XU Lefeng1 XU Xinyang1 ZHANG Huan1 ZHAO Zhigang1 ZHENG Tianhui1 ZHAO Jieyu1 ZENG Zhaoqiong1 LIU Xi1 CHEN Saihua1 WAN Jianmin2
1. State Key Laboratory of Crop Genetics and Germplasm Enhancement/Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China;
2. Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
关键词:
水稻晚开花突变体分子鉴定遗传分析SDG724
Keywords:
ricelate heading mutantmolecular identificationgenetic analysisSDG724
分类号:
S511.032
DOI:
10.7685/jnau.201705034
摘要:
[目的]通过对水稻晚开花突变体lft1(late flowering time)的鉴定及基因定位,解析水稻响应光周期调控开花的分子机制。[方法]从‘日本晴’T-DNA插入突变体库中筛选得到一个在长日照下晚开花的突变体lft1。调查了lft1/日本晴F2分离群体的开花期表型,分析晚开花表型与T-DNA插入之间的相关性。比较日本晴/9311 F2群体和lft1/9311 F2群体的开花期分布,选取群体中具有突变效应的极端晚开花单株进行基因定位。比较突变体lft1和野生型‘日本晴’中已知开花期基因的表达水平,分析基因在调控网络中的作用。[结果]相比于野生型‘日本晴’,突变体lft1在长日照条件下晚开花20 d,粒长和千粒质量均显著增加。对lft1/日本晴F2群体调查发现,晚开花性状由1对隐性基因控制,且与T-DNA插入呈现非共分离。相比于对照日本晴/9311 F2群体,在lft1/9311 F2群体中出现了极端晚开花的个体,从中选取了58株极端个体用于基因的初定位。利用‘日本晴’和‘9311’之间的多态性分子标记对极端晚开花个体进行了图位克隆,将基因限定在第9染色体短臂上,分子标记RM219与RM3912之间,物理距离为2.94 Mb的范围内。在开发标记的过程中,发现分子标记SJ9-32能够在‘日本晴’和‘9311’中实现扩增,但是在lft1及其后代的极端个体中均不能有效扩增。通过进一步设计标记,我们最终验证了在lft1中存在DNA片段的缺失,该缺失区段覆盖了SDG724基因。等位性测验进一步证实lft1的晚开花表型是由于SDG724基因的缺失而引起的。qRT-PCR结果表明,SDG724可以调节OsMADS51RFT1的表达水平。[结论]突变体lft1中由于SDG724基因的缺失,导致OsMADS51RFT1的表达水平下调,从而引起晚开花性状。通过调控SDG724基因的表达水平来调节水稻开花期,这在生产上将具有重要意义。
Abstract:
[Objectives]Identification and genetic mapping of a rice late flowering mutant lft1(late flowering time) helps uncovering the underlying mechanism of photoperiodic regulation of rice flowering. [Methods]A ‘Nipponbare’ T-DNA insertion mutant with late flowering time under long-day condition was selected. The relevance between late flowering and T-DNA insertion event was further established by analyzing lft1/Nipponbare F2 population. Two F2 populations,Nipponbare/9311 and lft1/9311 were investigated simultaneously and compared. Individuals with extremely late flowering time in lft1/9311 F2 population were performed on gene mapping. The expression level of flowering time related genes was compared between the wild type Nipponbare and lft1 to clarify the gene role in network. [Results]Compared to wild type Nipponbare,lft1 delayed flowering about 20 days under long-day condition,accompanied by increase of grain length and 1 000-grain weight. After investigation in lft1/Nipponbare F2 population,noco-segregation with T-DNA insertion was observed and the late flowering trait was controlled by a pair of recessive gene. Compared with control F2 population,extremely late flowering individuals were found,from which 58 were chosen for initial gene mapping. Genotyping of these individuals was performed by polymorphism markers developed between Nipponbare and 9311. The gene region was restricted on short arm of chromosome 9,flanked by molecular marker RM219 and RM3912,a length of 2.94 Mb region. In the process of further development of markers,we found that one molecular marker SJ9-32 can be detected by Nipponbare and 9311,but not by the lft1 and 58 extreme late flowering individuals. A large missing DNA segment covering SDG724 gene did exist. Anallelism test further confirmed that deletion in SDG724 was a causative factor of the late heading in lft1. The qRT-PCR results showed that SDG724 could regulate the expression of OsMADS51 and RFT1. [Conclusions]Due to the lack of SDG724 gene,corresponding expression levels of OsMADS51 and RFT1 were down regulated in lft1under long-day condition,therefore a late flowering trait was presented. It is feasible to adjust rice flowering by modulating the expression level of SDG724 gene,and this will work for rice breeding.

参考文献/References:

[1] 吴晶晶,魏子尧,杨春艳,等. 控制水稻抽穗延迟基因OsSET34的鉴定和图位克隆[J]. 南京农业大学学报,2015,38(5):704-711. DOI:10.7685/j.issn.1000-2030.2015.05.002. Wu J J,Wei Z Y,Yang C Y,et al. Identification and map-based cloning of OsSET34,a gene controling the delay of heading date in rice(Oryza sativa L.)[J]. Journal of Nanjing Agricultural University,2015,38(5):704-711(in Chinese with English abstract).
[2] Yano M,Harushima Y,Nagamura Y,et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map[J]. Theoretical and Applied Genetics,1997,95(7):1025-1032.
[3] Takeuchi Y,Lin S Y,Sasaki T,et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice[J]. Theoretical and Applied Genetics,2003,107(7):1174-1180.
[4] Yamamoto T,Lin H,Sasaki T,et al. Identification of heading date quantitative trait locus Hd6 and characterization of its epistatic interactions with Hd2 in rice using advanced backcross progeny[J]. Genetics,2000,154(2):885-891.
[5] Lin H X,Ashikari M,Yamanouchi U,et al. Identification and characterization of a quantitative trait locus,Hd9,controlling heading date in rice[J]. Breeding Science,2002,52(1):35-41.
[6] Lin S Y,Sasaki T,Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice,Oryza sativa L.,using backcross inbred lines[J]. Theoretical and Applied Genetics,1998,96(8):997-1003.
[7] Yano M,Katayose Y,Ashikari M,et al. Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS[J]. Plant Cell,2000,12(12):2473-2484.
[8] Kojima S,Takahashi Y,Kobayashi Y,et al. Hd3a,a rice ortholog of the Arabidopsis FT gene,promotes transition to flowering downstream of Hd1 under short-day conditions[J]. Plant and Cell Physiology,2002,43(10):1096-1105.
[9] Komiya R,Ikegami A,Tamaki S,et al. Hd3a and RFT1 are essential for flowering in rice[J]. Development,2008,135(4):767-774.
[10] Hayama R,Izawa T,Shimamoto K. Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method[J]. Plant and Cell Physiology,2002,43(5):494-504.
[11] Park D H,Somers D E,Kim Y S,et al. Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene[J]. Science,1999,285(5433):1579-1582.
[12] Hayama R,Yokoi S,Tamaki S,et al. Adaptation of photoperiodic control pathways produces short-day flowering in rice[J]. Nature,2003,422(6933):719-722.
[13] Doi K,Izawa T,Fuse T,et al. Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J]. Genes Dev,2004,18(8):926-936.
[14] Itoh H,Nonoue Y,Yano M,et al. A pair of floral regulators sets critical day length for Hd3a florigen expression in rice[J]. Nature Genetics,2010,42(7):635-638.
[15] Xue W Y,Xing Y Z,Weng X Y,et al. Natural variation in Ghd7 is an important regulator of flowering time and yield potential in rice[J]. Nature Genetics,2008,40(6):761-767.
[16] Lee S,Kim J,Han J J,et al. Functional analyses of the flowering time gene OsMADS50,the putative SUPPRESSOR OF OVEREXPRESSION OF CO1/AGAMOUS-LIKE 20(SOC1/AGL20) ortholog in rice[J]. Plant Journal,2004,38(5):754-764.
[17] Kim S L,Lee S,Kim H J,et al. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1,OsMADS14,and Hd3a[J]. Plant Physiology,2007,145(4):1484-1494.
[18] Wei X J,Xu J F,Guo H N,et al. DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously[J]. Plant Physiology,2010,153(4):1747-1758.
[19] Matsubara K,Yamanouchi U,Wang Z X,et al. Ehd2,a rice ortholog of the maize INDETERMINATE1 gene,promotes flowering by up-regulating Ehd1[J]. Plant Physiology,2008,148(3):1425-1435.
[20] Gao H,Zheng X M,Fei G,et al. Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice[J]. PLoS Genetics,2013,9(2):e1003281.
[21] Wu W X,Zheng X M,Lu G W,et al. Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia[J]. Proc Natl Acad Sci USA,2013,110(8):2775-2780.
[22] Takahashi Y,Shomura A,Sasaki T,et al. Hd6,a rice quantitative trait locus involved in photoperiod sensitivity,encodes the alpha subunit of protein kinase CK2[J]. Proc Natl Acad Sci USA,2001,98(14):7922-7927.
[23] Hori K,Ogiso-Tanaka E,Matsubara K,et al. Hd16,a gene for casein kinaseⅠis involved in the control of rice flowering time by modulating the day-length response[J]. Plant Journal,2013,76(1):36-46.
[24] Cartagena J A,Matsunaga S,Seki M,et al. The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen[J]. Developmental Biology,2008,315(2):355-368.
[25] Dong G F,Ma D P,Li J X. The histone methyltransferase SDG8 regulates shoot branching in Arabidopsis[J]. Biochemical and Biophysical Research Communications,2008,373(4):659-664.
[26] Berr A,Xu L,Gao J,et al. SET DOMAIN GROUP25 encodes a histone methyltransferase and is involved in FLOWERING LOCUS C activation and repression of flowering[J]. Plant Physiology,2009,151(3):1476-1485.
[27] Liu B,Wei G,Shi J L,et al. SET DOMAIN GROUP708,a histone H3 lysine 36-specific methyltransferase,controls flowering time in rice(Oryza sativa)[J]. New Phytologist,2016,210(2):577-588.
[28] Sui P F,Jin J,Ye S,et al. H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice[J]. Plant Journal,2012,70(2):340-347.
[29] Sun C H,Fang J,Zhao T L,et al. The histone methyltransferase SDG724 mediates H3K36me2/3 deposition at MADS50 and RFT1 and promotes flowering in rice[J]. Plant Cell,2012,24(8):3235-3247.
[30] Wan S Y,Wu J X,Zhang Z G,et al. Activation tagging,an efficient tool for functional analysis of the rice genome[J]. Plant Molecular Biology,2009,69(1/2):69-80.
[31] Siebert P D,Chenchik A,Kellogg D E,et al. An improved PCR method for walking in uncloned genomic DNA[J]. Nucleic Acids Research,1995,23(6):1087-1088.
[32] Sallaud C,Meynard D,van Boxtel J,et al. Highly efficient production and characterization of T-DNA plants for rice(Oryza sativa L.) functional genomics[J]. Theoretical and Applied Genetics,2003,106(8):1396-1408.
[33] Tsuji H,Taoka K,Shimamoto K. Regulation of flowering in rice:two florigen genes,a complex gene network,and natural variation[J]. Current Opinion in Plant Biology,2011,14(1):45-52.
[34] Zhu S S,Wang J C,Cai M H,et al. The OsHAPL1-DTH8-Hd1 complex functions as the transcription regulator to repress heading date in rice[J]. Journal of Experimental Botany,2017,68(3):553-568.
[35] Nemoto Y,Nonoue Y,Yano M,et al. Hd1,a CONSTANS ortholog in rice,functions as an Ehd1 repressor through interaction with monocot-specific CCT-domain protein Ghd7[J]. Plant Journal,2016,86(3):221-233.
[36] Bastow R,Mylne J S,Lister C,et al. Vernalization requires epigenetic silencing of FLC by histone methylation[J]. Nature,2004,427(6970):164-167.
[37] 宋博研,朱卫国. 组蛋白甲基化修饰效应分子的研究进展[J]. 遗传,2011,(04):285-292. Song B Y,Zhu W G. Advances in effector protein of histone methylation[J]. Hereditas,2011,(4):285-292(in Chinese with English abstract).

相似文献/References:

[1]张辰明,徐烨红,赵海娟,等.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,2011,34(3):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
 ZHANG Chen-ming,XU Ye-hong,ZHAO Hai-juan,et al.Effects of different nitrogen forms on nitrogen uptake and root growth of rice at the seedling stage[J].Journal of Nanjing Agricultural University,2011,34(1):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
[2]郝文雅,沈其荣,冉炜,等.西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J].南京农业大学学报,2011,34(3):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
 HAO Wen-ya,SHEN Qi-rong,RAN Wei,et al.The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f.sp. niveum[J].Journal of Nanjing Agricultural University,2011,34(1):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
[3]徐小飒,刘喜,赵志刚,等.培矮64S/93-11重组自交系分子图谱构建及千粒重QTL检测[J].南京农业大学学报,2011,34(1):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
 XU Xiao-sa,LIU Xi,ZHAO Zhi-gang,et al.Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S/93-11 and detection of QTL for 1000-grain weight[J].Journal of Nanjing Agricultural University,2011,34(1):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
[4]魏广彬,徐海港,丁艳峰,等.水稻设计栽培系统的研制与实现[J].南京农业大学学报,2011,34(1):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
 WEI Guang-bin,XU Hai-gang,DING Yan-feng,et al.Development and realization of the rice design cultivation system[J].Journal of Nanjing Agricultural University,2011,34(1):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
[5]李刚华,王惠芝,王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J].南京农业大学学报,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
 LI Gang-hua,WANG Hui-zhi,WANG Shao-hua,et al.Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J].Journal of Nanjing Agricultural University,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
[6]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
 WANG Bi-qian,FAN Xiao-rong,XU Guo-hua,et al.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(1):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
[7]赵成国,徐海港,李刚华,等.超高产单季粳稻抽穗期群体构成研究[J].南京农业大学学报,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
 ZHAO Cheng-guo,XU Hai-gang,LI Gang-hua,et al.Studies on population composition of super-high-yielding single-cropping japonica rice in heading stage[J].Journal of Nanjing Agricultural University,2011,34(1):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
[8]陈志德,仲维功,王军,等.水稻苗期Cd2+胁迫的QTL定位研究[J].南京农业大学学报,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
 CHEN Zhi-de,ZHONG Wei-gong,WANG Jun,et al.Mapping of QTL of tolerance to Cd^{2+} stress at seedling stage in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
[9]叶利庭,樊剑波,徐晔红,等.不同氮效率水稻的生长特性[J].南京农业大学学报,2010,33(3):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
 YE Li-ting,FAN Jian-bo,XU Ye-hong,et al.Characteristics of growth in rice genotypes with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(1):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
[10]晋玉宽,杨世湖,余丽,等.不同启动子驱动下Pib基因的表达及与稻瘟病抗性的关系[J].南京农业大学学报,2010,33(4):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]
 JIN Yu-kuan,YANG Shi-hu,YU Li,et al.Expression and resistance analysis of the Pib gene in transgenic rice under different promoters[J].Journal of Nanjing Agricultural University,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]

备注/Memo

备注/Memo:
收稿日期:2017-05-19。
基金项目:国家重点研发计划项目(2016YFD0101801);国家863计划项目(2014AA10A603-15);江苏省科技支撑计划项目(BE2015355-1);江苏省农业科技自主创新资金项目(CX(16)1029)
作者简介:许乐峰,硕士研究生。
通信作者:陈赛华,教授,研究方向为水稻抽穗期相关的分子遗传育种,E-mail:saihuachen@njau.edu.cn;万建民,院士,研究方向为水稻分子遗传育种,E-mail:wanjm@njau.edu.cn。
更新日期/Last Update: 1900-01-01