[1]夏朝阳,安晓晖,张中起,等.棉花E3泛素连接酶基因GhRING1-like的克隆及功能分析[J].南京农业大学学报,2019,42(1):39-50.[doi:10.7685/jnau.201804020]
 XIA Zhaoyang,AN Xiaohui,ZHANG Zhongqi,et al.Cloning and functional analysis of cotton E3 ubiquitin ligase gene GhRING1-like[J].Journal of Nanjing Agricultural University,2019,42(1):39-50.[doi:10.7685/jnau.201804020]
点击复制

棉花E3泛素连接酶基因GhRING1-like的克隆及功能分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
39-50
栏目:
植物科学
出版日期:
2019-01-09

文章信息/Info

Title:
Cloning and functional analysis of cotton E3 ubiquitin ligase gene GhRING1-like
作者:
夏朝阳 安晓晖 张中起 葛冬冬 刘康
南京农业大学农学院/作物遗传与种质创新国家重点实验室, 江苏 南京 210095
Author(s):
XIA Zhaoyang AN Xiaohui ZHANG Zhongqi GE Dongdong LIU Kang
College of Agriculture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
关键词:
E3泛素连接酶干旱胁迫实时荧光定量PCR病毒介导的基因沉默(VIGS)转基因拟南芥
Keywords:
E3 ubiquitin ligasedrought stressreal-time fluorescence quantitative PCRvirus-induced gene silencing (VIGS)transgenic Arabidopsis thaliana
分类号:
S634.3
DOI:
10.7685/jnau.201804020
摘要:
[目的]RING(really interesting new gene)finger E3泛素连接酶在植物生长发育和抵御环境胁迫中具有重要作用。克隆棉花RING finger E3泛素连接酶基因GhRING1-like并分析其表达特征和功能,为该基因分子作用机制研究和育种应用奠定基础。[方法]根据棉花表达谱分析,选取并克隆干旱胁迫处理上调表达基因GhRING1-like,qRT-PCR分析GhRING1-like的组织表达特性及其对不同非生物胁迫和激素处理的响应模式;采用瞬时表达对GhRING1-like-GFP融合蛋白进行亚细胞定位分析;通过获得病毒介导的基因沉默(VIGS)棉花和过表达拟南芥植株,分析沉默或过表达GhRING1-like对植株生长发育及其抗旱性的影响。[结果]GhRING1-like基因序列全长996 bp,编码332个氨基酸,其C端含有RING-H2(C3H2C3)结构域。GhRING1-like定位于内质网上。GhRING1-like在叶片中优势表达;200 g·L-1 PEG6000诱导处理1 h后瞬时显著上调表达12倍;GhRING1-like对NaCl、ABA和SA的响应时间都在处理后3 h,上调表达均在5倍左右。干旱胁迫处理后,VIGS沉默GhRING1-like棉花叶片相对含水量和叶绿素荧光参数Fv/Fm分别较未沉默对照降低17.1%和30.6%,而电解质渗透率和丙二醛含量分别较对照提高70.8%和100%。过表达GhRING1-like显著提高了拟南芥种子萌发和幼苗期对于甘露醇引起的渗透胁迫的耐受性;可使营养生长中后期阶段的拟南芥在水分亏缺处理下的存活率提高2.4倍;转基因拟南芥叶片气孔开度降低51.2%,失水率明显降低。干旱胁迫下,过表达GhRING1-like使依赖于ABA诱导表达的AtAREB1、AtERD15、AtRD29A上调表达,而对不依赖ABA的干旱胁迫诱导基因AtDREB和脯氨酸合成基因AtPLD没有影响。[结论]棉花GhRING1-like参与了植物非生物胁迫抗性的调控,主要通过依赖于ABA通路正向调控植物的抗旱反应。
Abstract:
[Objectives]The RING(really interesting new gene) finger E3 ubiquitin ligase plays a crucial role in plant growth and response to various environmental stresses. Cloning and functional analysis of RING finger E3 ligase gene GhRING1-like was conducted to understand its molecular mechanisms and lay the foundation for further application in cotton genetic improvement. [Methods]Based on transcriptome data analysis,the GhRING1-like gene up-regulated in drought stress was screened and molecularly cloned,the expression patterns in different tissues along with in response to different abiotic stress and phytohormone treatments were characterized by using quantitative real-time PCR;GhRING1-like-GFP fusion protein was transiently expressed for subcellular localization analysis;virus-induced gene silencing(VIGS) of GhRING1-like cotton and transgenic Arabidopsis overexpressing GhRING1-like were generated to determine the biological roles of GhRING1-like in plant growth and drought resistance. [Results]GhRING1-like consists of a 996 bp of open reading frame,which encodes a protein of 332 amino acids with a RING-H2(C3H2C3) domain at the C-terminus. GhRING1-like is located at the endoplasmic reticulum. qRT-PCR analysis indicated that GhRING1-like transcript was preferentially accumulated in leaves,GhRING1-like was markedly up-regulated by 12-fold at 1 h post treatment with 200 g·L-1 PEG6000,approximately 5 times elevated expression of GhRING1-like was observed after 3 h treatment with NaCl,ABA and SA,respectively. Under water deficit,the relative water content and chlorophyll fluorescence parameter Fv/Fm in the VIGS cotton leaves reduced by 17.1% and 30.6% than those in the control plants,respectively;while the electrolyte leakage and malondialdehyde content in the VIGS plants increased 70.8% and 100% than those in the control plants,respectively. Overexpression of GhRING1-like significantly increased the tolerance of Arabidopsis seed germination and young seedlings to the osmotic stress derived from mannitol. Moreover,transgenic Arabidopsis at stage of middle to late vegetative growth increased 2.4-fold higher plants survival rate than that of wild type plants. The stomatal apertures in the transgenic Arabidopsis decreased by 51.2% than that of wild type plants,and the water loss rate significantly reduced under water deficit. Under drought stress,the expression of ABA dependent drought inducing genes including AtAREB1,AtERD15 and AtRD29A was upregulated,but that of ABA independent drought stress-inducing genes of AtDREB and proline synthesis gene AtPLD was unaffected in the overexpressed GhRING1-like Arabidopsis. [Conclusions]Our results indicate that GhRING1-like is involved in the regulation of plant abiotic stress resistance,mainly through ABA dependent pathway to positively regulate the drought responses of plant.

参考文献/References:

[1] Luo L J. Breeding for water-saving and drought-resistance rice(WDR) in China[J]. Journal of Experimental Botany,2010,61(13):3509-3517.
[2] 马琼,王雅鹏. 新疆棉花生产的外部环境成本评估[J]. 干旱区资源与环境,2015,29(6):63-68. Ma Q,Wang Y P. Evaluating the externally environmental cost of cotton production in Xinjiang[J]. Journal of Arid Land Resources and Environment,2015,29(6):63-68(in Chinese with English abstract).
[3] Shinozaki K,Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany,2007,58(2):221-227.
[4] Xia Z L,Su X H,Liu J J,et al. The RING-H2 finger gene 1(RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum[J]. Genetica,2013,141(1/2/3):11-21.
[5] Sharma B,Joshi D,Yadav P K,et al. Role of ubiquitin-mediated degradation system in plant biology[J]. Frontiers in Plant Science,2016,7:806.
[6] Santner A,Estelle M. The ubiquitin-proteasome system regulates plant hormone signaling[J]. Plant Journal,2010,61(6):1029-1040.
[7] Hellmann H,Estelle M. Plant development:regulation by protein degradation[J]. Science,2002,297(5582):793-797.
[8] Stone S L,Hauksdottir H,Troy A,et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiology,2005,137(1):13-30.
[9] Lyzenga W J,Stone S L. Abiotic stress tolerance mediated by protein ubiquitination[J]. Journal of Experimental Botany,2012,63(2):599-616.
[10] Ko J H,Yang S H,Han K H. Upregulation of an Arabidopsis RING-H2 gene,XERICO,confers drought tolerance through increased abscisic acid biosynthesis[J]. Plant Journal,2006,47(3):343-355.
[11] Zeng D E,Hou P,Xiao F M,et al. Overexpression of Arabidopsis XERICO gene confers enhanced drought and salt stress tolerance in rice(Oryza sativa L.)[J]. Journal of Plant Biochemistry and Biotechnology,2015,24(1):56-64.
[12] Stone S L,Williams L A,Farmer L M,et al. KEEP ON GOING,a RING E3 ligase essential for Arabidopsis growth and development,is involved in abscisic acid signaling[J]. Plant Cell,2006,18(12):3415-3428.
[13] Liu H,Stone S L. Abscisic acid increases Arabidopsis ABI5 transcription factor levels by promoting KEG E3 ligase self-ubiquitination and proteasomal degradation[J]. Plant Cell,2010,22(8):2630-2641.
[14] Zhang X,Garreton V,Chua N H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation[J]. Genes & Development,2005,19(13):1532-1543.
[15] Zhang Y Y,Yang C W,Li Y,et al. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis[J]. Plant Cell,2007,19(6):1912-1929.
[16] Zhang H W,Cui F,Wu Y,et al. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis[J]. Plant Cell,2015,27(1):214-227.
[17] Gao T,Wu Y,Zhang Y Y,et al. OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice[J]. Plant Molecular Biology,2011,76(1/2):145-156.
[18] Li H,Jiang H,Bu Q,et al. The Arabidopsis RING finger E3 ligase RHA2b acts additively with RHA2a in regulating abscisic acid signaling and drought response[J]. Plant Physiology,2011,156(2):550-563.
[19] Bu Q,Li H,Zhao Q,et al. The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development[J]. Plant Physiology,2009,150(1):463-481.
[20] Ryu M Y,Cho S K,Kim W T. The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress[J]. Plant Physiology,2010,154(4):1983-1997.
[21] Cho S K,Ryu M Y,Seo D H,et al. The Arabidopsis RING E3 ubiquitin ligase AtAIRP2 plays combinatory roles with AtAIRP1 in abscisic acid-mediated drought stress responses[J]. Plant Physiology,2011,157(4):2240-2257.
[22] Lee H K,Cho S K,Son O,et al. Drought stress-induced Rma1H1,a RING membrane-anchor E3 ubiquitin ligase homolog,regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants[J]. Plant Cell,2009,21(2):622-641.
[23] Lim S D,Lee C,Jang C S. The rice RING E3 ligase,OsCTR1,inhibits trafficking to the chloroplasts of OsCP12 and OsRP1,and its overexpression confers drought tolerance in Arabidopsis[J]. Plant,Cell & Environment,2014,37(5):1097-1113.
[24] Ho M H,Saha S,Jenkins J N,et al. Characterization and promoter analysis of a cotton RING-type ubiquitin ligase(E3) gene[J]. Molecular Biotechnology,2010,46(2):140-148.
[25] Liu Y C,Zhang X N,Zhu S H,et al. Overexpression of GhSARP1 encoding a E3 ligase from cotton reduce the tolerance to salt in transgenic Arabidopsis[J]. Biochemical and Biophysical Research Communications,2016,478(4):1491-1496.
[26] Lü F,Han M Y,Ge D D,et al. GhVLN4 is involved in cell elongation via regulation of actin organization[J]. Planta,2017,246(4):687-700.
[27] Gao X Q,Britt R C,Jr,Shan L B,et al. Agrobacterium-mediated virus-induced gene silencing assay in cotton[J]. Journal of Visualized Experiments,2011,54:e2938.
[28] Martinez-Trujillo M,Limones-Briones V,Cabrera-Ponce J L,et al. Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method[J]. Plant Molecular Biology Reporter,2004,22(1):63-70.
[29] Zhao L N,Li Y Q,Xie Q,et al. Loss of CDKC;2 increases both cell division and drought tolerance in Arabidopsis thaliana[J]. Plant Journal,2017,91:816-828.
[30] Pauwels L,Ritter A,Goossens J,et al. The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability[J]. Plant Physiology,2015,169(2):1405-1417.
[31] Chapagain S,Park Y C,Jang C S. Functional diversity of RING E3 ligases of major cereal crops in response to abiotic stresses[J]. Journal of Crop Science and Biotechnology,2017,20(5):351-357.
[32] Lin S S,Martin R,Mongrand S,et al. RING1 E3 ligase localizes to plasma membrane lipid rafts to trigger FB1-induced programmed cell death in Arabidopsi[J]. Plant Journal,2008,56(4):550-561.
[33] Yoshida T,Mogami J,Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants[J]. Current Opinion in Plant Biology,2014,21:133-139.
[34] Kariola T,Brader G,Helenius E,et al. EARLY RESPONSIVE TO DEHYDRATION 15,a negative regulator of abscisic acid responses in Arabidopsis[J]. Plant Physiology,2006,142(4):1559-1573.
[35] Msanne J,Lin J S,Stone J M,et al. Characterization of abiotic stress-responsive Arabidopsis thaliana RD29A and RD29B genes and evaluation of transgenes[J]. Planta,2011,234(1):97-107.

相似文献/References:

[1]宋晓宏,沙伟*,金忠民,等.毛尖紫萼藓GpAPX的克隆和信息学分析及其在植株干旱与复水下的表达分析[J].南京农业大学学报,2012,35(2):51.[doi:10.7685/j.issn.1000-2030.2012.02.009]
 SONG Xiao-hong,SHA Wei*,JIN Zhong-min,et al.Cloning,bioinformatics analysis and expression analysis of GpAPX during dehydration and rehydration in Grimmia pilifera[J].Journal of Nanjing Agricultural University,2012,35(1):51.[doi:10.7685/j.issn.1000-2030.2012.02.009]
[2]金微微,王炎,张会慧,等.干旱胁迫下不同施氮水平对烤烟幼苗光合系统PSⅡ功能的影响[J].南京农业大学学报,2012,35(4):21.[doi:10.7685/j.issn.1000-2030.2012.04.004]
 JIN Wei-wei,WANG Yan,ZHANG Hui-hui,et al.Effects of different nitrogen rate on the functions of flue-cured tobacco seedlings photosystemⅡ under drought stress[J].Journal of Nanjing Agricultural University,2012,35(1):21.[doi:10.7685/j.issn.1000-2030.2012.04.004]
[3]楼望淮,蒋甲福,陈素梅,等.菊花B病毒外壳蛋白互作蛋白的筛选[J].南京农业大学学报,2013,36(4):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]
 LOU Wanghuai,JIANG Jiafu,CHEN Sumei,et al.Screening of proteins interacting with the coat protein of Chrysanthemum virus B[J].Journal of Nanjing Agricultural University,2013,36(1):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]
[4]江学海,李刚华,王绍华,等.不同生育阶段干旱胁迫对杂交稻产量的影响[J].南京农业大学学报,2015,38(2):173.[doi:10.7685/j.issn.1000-2030.2015.02.001]
 JIANG Xuehai,LI Ganghua,WANG Shaohua,et al.Effect of drought stress at different growth stages on grain yield of indica hybrid rice[J].Journal of Nanjing Agricultural University,2015,38(1):173.[doi:10.7685/j.issn.1000-2030.2015.02.001]
[5]刘海艳,杨丽洁,丁艳锋,等.NO对水稻孕穗期干旱胁迫下叶片光合及产量的影响[J].南京农业大学学报,2017,40(2):195.[doi:10.7685/jnau.201605012]
 LIU Haiyan,YANG Lijie,DING Yanfeng,et al.Effects of nitric oxide on photosynthesis and yield of rice under drought stress at booting stage[J].Journal of Nanjing Agricultural University,2017,40(1):195.[doi:10.7685/jnau.201605012]
[6]侯佳丽,李保平,孟玲.取食干旱胁迫小麦对黏虫及其寄生性斑痣悬茧蜂生长发育的影响[J].南京农业大学学报,2018,41(2):302.[doi:10.7685/jnau.201707015]
 HOU Jiali,LI Baoping,MENG Ling.Effects of drought stress on developmental performances of Mythimna separata and its parasitoid Meteorus pulchricornis[J].Journal of Nanjing Agricultural University,2018,41(1):302.[doi:10.7685/jnau.201707015]

备注/Memo

备注/Memo:
收稿日期:2018-04-11。
基金项目:国家自然科学基金项目(31371672)
作者简介:夏朝阳,硕士研究生。
通信作者:刘康,教授,研究方向为棉花遗传育种,E-mail:kangliu@njau.edu.cn。
更新日期/Last Update: 1900-01-01