[1]崔守尧,吴震,吕海萌,等.外源CaCl2缓解番茄裂果的生理机制[J].南京农业大学学报,2019,42(1):59-65.[doi:10.7685/jnau.201802015]
 CUI Shouyao,WU Zhen,Lü Haimeng,et al.The physiological mechanism of exogenous CaCl2 relieving tomato fruit cracking[J].Journal of Nanjing Agricultural University,2019,42(1):59-65.[doi:10.7685/jnau.201802015]
点击复制

外源CaCl2缓解番茄裂果的生理机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
59-65
栏目:
植物科学
出版日期:
2019-01-09

文章信息/Info

Title:
The physiological mechanism of exogenous CaCl2 relieving tomato fruit cracking
作者:
崔守尧 吴震 吕海萌 薛灵姿 蒋芳玲
南京农业大学园艺学院/农业农村部华东地区园艺作物生物学与种质创新重点实验室, 江苏 南京 210095
Author(s):
CUI Shouyao WU Zhen Lü Haimeng XUE Lingzi JIANG Fangling
College of Horticulture/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
关键词:
番茄裂果外源CaCl2抗氧化系统细胞壁离子
Keywords:
tomatofruit crackingexogenous CaCl2antioxidant systemcell wallions
分类号:
S641.2
DOI:
10.7685/jnau.201802015
摘要:
[目的]本文旨在从生理水平探究外源CaCl2缓解番茄裂果的机制,为裂果的防控提供理论依据。[方法]以耐裂和易裂果番茄为材料,喷施10 g·L-1 CaCl2溶液,统计番茄裂果率,测定抗氧化酶活性变化、相关离子(Ca2+、K+、Mg2+、B3+)含量、细胞壁主要成分含量(纤维素和果胶)、细胞壁关键水解酶(纤维素酶和多聚半乳糖醛酸酶)活性。[结果]10 g·L-1 CaCl2处理可以显著降低易裂果番茄的裂果率,降低果皮中过氧化氢(H2O2)和丙二醛(MDA)含量及抗氧化酶活性,使易裂番茄电导率显著下降。10 g·L-1 CaCl2处理下,番茄果皮Ca2+、K+、B3+的含量显著升高,Mg2+含量下降;果皮中纤维素酶和多聚半乳糖醛酸酶活性降低,细胞壁中纤维素和果胶的含量增加。[结论]喷施CaCl2处理可以降低番茄果实的氧化胁迫伤害,稳定细胞膜结构,促进番茄对Ca2+、K+、B3+离子的吸收,减少对Mg2+的吸收,使Ca2+、B3+与细胞壁更易结合,从而增加细胞壁的强度,缓解裂果的发生。
Abstract:
[Objectives]The aim of this study is to investigate the physiological mechanism of tomato fruit cracking influenced by exogenous CaCl2,which can provide a theoretical basis for the prevention of fruit cracking. [Methods]We adopted crack-resistant and crack-susceptible tomatoes as the plant materials with 10 g·L-1 CaCl2 spraying as the treatment. And the fruit cracking rate,antioxidant enzyme activity,related ions(Ca2+,K+,Mg2+,B3+),cell wall components(pectin and cellulose) and the wall-metabolic hydrolases(cellulase and polygalacturonase) were then measured. [Results]The results showed that 10 g·L-1 CaCl2 treatment significantly reduced the fruit crack rate in the crack-susceptible tomato. The contents of H2O2 and MDA and antioxidant enzyme activity decreased in tomato pericarp,the electrical conductivity reduced;the concentration of Ca2+,K+,B3+ increased,and Mg2+ decreased significantly. Simultaneously,the activities of cellulase and polygalacturonase decreased,and cellulose and protopectin concentrations increased. [Conclusions]The treatment of exogenous CaCl2 can prevent cell from oxidative damage,make the cell membrane structure more stable,improve the absorption of Ca2+,K+,B3+,and prevent the absorption of Mg2+. Ca2+ and B3+ are easier to bind to cell wall,which would strengthen the cell wall. Exogenous CaCl2 can reduce the occurrence of fruit splitting.

参考文献/References:

[1] Opara L U,Studman C J,Banks N H. Sunlight affects the incidence of internal ring cracking and other physical attributes of ‘Gala’ apples[J]. Journal of Tree Fruit Production,1997,2(1):45-52.
[2] Khadivi-Khub A. Physiological and genetic factors influencing fruit cracking[J]. Acta Physiol Plant,2015,37(1):1718.
[3] 夏永秀,廖明安,邱利娜. 甜樱桃裂果与防治研究进展[J]. 中国果树,2010(2):55-59. Xia Y X,Liao M A,Qiu L N. Progress of sweet cherry fruit cracking and prevention research[J]. China Fruits,2010(2):55-59(in Chinese).
[4] Rupert M,Southwick S,Weis K,et al. Calcium chloride reduces rain cracking in sweet cherries[J]. California Agriculture,1997,51(5):35-40.
[5] Yang Z,Wu Z,Zhang C,et al. The composition of pericarp,cell aging,and changes in water absorption in two tomato genotypes:mechanism,factors,and potential role in fruit cracking[J]. Acta Physiol Plant,2016,38(9):215.
[6] 李建国,黄旭明,黄辉白. 裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较[J]. 植物生理与分子生物学学报,2003,29(2):141-146. Li J G,Huang X M,Huang H B. Composition of enzymatic activity related to cell-wall metabolism in different litchi cultivars[J]. Journal of Plant Physiology and Molecular Biology,2003,29(2):141-146(in Chinese with English abstract).
[7] Wang Y,Long L E. Physiological and biochemical changes relating to postharvest splitting of sweet cherries affected by calcium application in hydrocooling water[J]. Food Chemistry,2015,181:241-247.
[8] 刘铁铮,徐继忠,王连荣,等. 水果裂果研究进展[J]. 河北林果研究,2004,19(3):282-287. Liu T Z,Xu J Z,Wang L R,et al. Progress on the study of fruit cracking[J]. Hebei Journal of Forestry and Orchard Research,2004,19(3):282-287(in Chinese with English abstract).
[9] 陈硕,陈珈. 植物中钙依赖蛋白激酶(CDPKs) 的结构与功能[J]. 植物学通报,2001,18(2):143-148. Chen S,Chen J. The structure and function of calcium-dependent protein kinases in plants[J]. Chinese Bulletin of Botany,2001,18(2):143-148(in Chinese with English abstract).
[10] 章文华,陈亚华,刘友良. 钙在植物细胞盐胁迫信号转导中的作用[J]. 植物生理学通讯,2000,36(2):146-153. Zhang W H,Chen Y H,Liu Y L. Calcium action in signal transduction in plant cells under salt stress[J]. Plant Physiology Communications,2000,36(2):146-153(in Chinese with English abstract).
[11] 赵晓美,王红梅,杨卫,等. 钙对西瓜幼苗生长、光合特性及保护性酶活性的影响[J]. 北方园艺,2012(14):144-146. Zhao X M,Wang H M,Yang W,et al. Effect of different Ca2+ concentrations on the growth,photosynthetic characteristics,protective enzyme activity of watermelon seedling[J]. Northern Horticulture,2012(14):144-146(in Chinese with English abstract).
[12] 梁颖,王三根,李帮秀. 钙对离体水稻叶片和地上部衰老的影响[J]. 西南农业大学学报,1997,19(2):121-125. Liang Y,Wang S G,Li B X. Influence of calciumon the isolated shoot and leaf of rice seeding[J]. Journal of Southwest Agricultural University,1997,19(2):121-125(in Chinese with English abstract).
[13] 张川,王亚晨,崔守尧,等. 耐裂果与易裂果番茄果实发育过程中果实组织衰老与裂果的关系[J]. 南京农业大学学报,2016,39(4):534-542. DOI:10.7685/jnau.201601035. Zhang C,Wang Y C,Cui S Y,et al. The relationship between fruit tissue senescence and fruit cracking in cracking-resistant and susceptible tomato during fruit ripening[J]. Journal of Nanjing Agricultural University,2016,39(4):534-542(in Chinese with English abstract).
[14] Chakrabarty D,Datta S K. Micropropagation of gerbera:lipid peroxidation and antioxidant enzyme activities during acclimatization process[J]. Acta Physiologiae Plantarum,2008,30(3):325-331.
[15] Kumar G,Knowles N R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato(Solanum tuberosum) seed-tubers[J]. Plant Physiology,1993,102(1):115-124.
[16] Bajji M,Bertin P,Lutts S,et al. Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected in vitro[J]. Australian Journal of Experimental Agriculture,2004,44(1):27-35.
[17] Beauchamp C,Fridovich I. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels[J]. Analytical Biochemistry,1971,44(1):276-287.
[18] Zhou W,Zhao D,Lin X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape(Brassica napus L.)[J]. Journal of Plant Growth Regulation,1997,16(1):47-53.
[19] Aebi H. Catalase in vitro[J]. Methods in Enzymology,1984,105:121-126.
[20] Mu?oz-Mu?oz J L,García-Molina F,García-Ruiz P A,et al. Enzymatic and chemical oxidation of trihydroxylated phenols[J]. Food Chemistry,2009,113(2):435-444.
[21] Wheeler C R,Salzman J A,Elsayed N M,et al. Automated assays for superoxide dismutase,catalase,glutathione peroxidase,and glutathione reductase activity[J]. Analytical Biochemistry,1990,184(2):193-199.
[22] 曹建康,姜微波,赵玉梅. 果蔬采后生理生化实验指导[M]. 北京:中国轻工业出版社,2007. Cao J K,Jiang W B,Zhao Y M. Experiment Guidance of Postharvest Physiology and Biochemistry of Fruits and Vegetablles[M]. Beijing:China Light Industry Press,2007(in Chinese).
[23] 王保明,丁改秀,王小原,等. 枣果实裂果的组织结构及水势变化的原因[J]. 中国农业科学,2013,46(21):4558-4568. Wang B M,Ding G X,Wang X Y,et al. Changes of histological structure and water potential of Huping jujube fruit cracking[J]. Scientia Agricultura Sinica,2013,46(21):4558-4568(in Chinese with English abstract).
[24] Fobel M,Lynch D V,Thompson J E. Membrane deterioration in senescing carnation flowers[J]. Plant Physiology,1987,85:204-211.
[25] 段风琴. 壶瓶枣裂果的钙素营养生理及施钙效果研究[D]. 太谷:山西农业大学,2016:25-40. Duan F Q. Influence of calcium on fruit cracking of jujube ‘Huping’ and its physiological mechanism[D]. Taigu:Shanxi Agricultural University,2016:25-40(in Chinese with English abstract).
[26] Islam M Z,Mele M A,Baek J P,et al. Cherry tomato qualities affected by foliar spraying with boron and calcium[J]. Horticulture Environment and Biotechnology,2016,57(1):46-52.
[27] 李成忠. 影响芍药花茎机械强度的生理机制研究[D]. 扬州:扬州大学,2013:36-46. LI C Z. Studies on physiological mechanism affecting the mechanical strength of inflorescence stem in herbaceous peony(Paeonia lacdflora Pall.)[D]. Yangzhou:Yangzhou University,2013:36-46(in Chinese with English abstract).
[28] 王宁,秦煊楠. 矿质营养对锦橙裂果的影响[J]. 西南农业大学学报,1987,9(4):458-462. Wang N,Qin X N. Effect of mineral nutrition levels on fruit splitting in Jin-cheng orange[J]. Journal of Southwest Agricultural University,1987,9(4):458-462(in Chinese with English abstract).
[29] 林兰稳. 矿质营养对荔枝裂果率的影响[J]. 土壤与环境,2001,10(1):55-56. Lin L W. Effects of mineral nutrition on fruit cracking rate of Litchi chinensis[J]. Soil and Environmental Sciences,2001,10(1):55-56(in Chinese with English abstract).
[30] 杨为海,曾辉,邹明宏,等. 裂果发生与果皮细胞壁修饰的关系研究进展[J]. 热带作物学报,2011,32(10):1995-1999. Yang W H,Zeng H,Zou M H,et al. An overview of the roles of cell wall modification in fruit pericarp cracking[J]. Chinese Journal of Tropical Crops,2011,32(10):1995-1999(in Chinese with English abstract).
[31] 温明霞,石孝均. 锦橙裂果的钙素营养生理及施钙效果研究[J]. 中国农业科学,2012,45(6):1127-1134. Wen M X,Shi X J. Influence of calcium on fruit cracking of Jincheng orange and its physiological mechanism[J]. Scientia Agricultura Sinica,2012,45(6):1127-1134(in Chinese with English abstract).
[32] Liu G D,Wang R D,Wu L S,et al. Differential changes in cell-wall content and boron and calcium concentration in Newhall navel orange grafted on two rootstocks differing in boron-deficiency responses[J]. Communications in Soil Science and Plant Analysis,2015,46(4):439-453.

相似文献/References:

[1]卢颖林,李庆余,徐新娟,等.全根和分根培养条件下番茄幼苗对不同形态氮素的响应[J].南京农业大学学报,2010,33(6):43.[doi:10.7685/j.issn.1000-2030.2010.06.009]
 LU Ying-lin,LI Qing-yu,XU Xin-juan,et al.Responses of tomato seedling to different nitrogen forms supplied by either homogenous or localized culture[J].Journal of Nanjing Agricultural University,2010,33(1):43.[doi:10.7685/j.issn.1000-2030.2010.06.009]
[2]刘杨,陈火英,魏毓棠.番茄SSR遗传连锁图谱的构建及每序花数性状的QTL定位[J].南京农业大学学报,2005,28(4):30.[doi:10.7685/j.issn.1000-2030.2005.04.007]
[3]张子学,侯喜林,范进展.3 种茄科蔬菜相互嫁接的综合效应探讨[J].南京农业大学学报,2003,26(2):16.[doi:10.7685/j.issn.1000-2030.2003.02.004]
 ZHANG Zi xue,HOU Xi lin,FAN Jin zhan.The comprehensive effects on mutual grafting in three kinds of Solanaceac vegetables[J].Journal of Nanjing Agricultural University,2003,26(1):16.[doi:10.7685/j.issn.1000-2030.2003.02.004]
[4]任欣正,申道林,谢贻格.番茄青枯病的生物防治[J].南京农业大学学报,1993,16(1):45.[doi:10.7685/j.issn.1000-2030.1993.01.008]
 Ren Xinzheng Shen Daolin Xie Yige.BIOLOGICAL CONTROL OF TOMATO WILT[J].Journal of Nanjing Agricultural University,1993,16(1):45.[doi:10.7685/j.issn.1000-2030.1993.01.008]
[5]张春兰,张耀栋,吕烈武,等.不同品种番茄嫁接植株间吸钾特性差异的研究[J].南京农业大学学报,1995,18(3):72.[doi:10.7685/j.issn.1000-2030.1995.03.013]
 Zhang Chunlan,Zhang Yaodong,Lu Liewu,et al.ON THE POTASSIUM UPTAKE OF THE GRAFT PLANTS OF DIFFERENT VARIETIES OF TOMATO[J].Journal of Nanjing Agricultural University,1995,18(1):72.[doi:10.7685/j.issn.1000-2030.1995.03.013]
[6]王艳,龚义勤,赵统敏,等.番茄SRAP-PCR体系优化与品种分子鉴定[J].南京农业大学学报,2007,30(1):23.[doi:10.7685/j.issn.1000-2030.2007.01.005]
 WANG Yan,GONG Yi-qin,ZHAO Tong-min,et al.Optimization of SRAP-PCR system and cultivar molecular identification in tomato(Lycopersicon esculentum L.)[J].Journal of Nanjing Agricultural University,2007,30(1):23.[doi:10.7685/j.issn.1000-2030.2007.01.005]
[7]肖同建,陈芳,朱震,等.不同根际细菌对南方根结线虫抑制效果的研究[J].南京农业大学学报,2011,34(4):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]
 XIAO Tong-jian,CHEN Fang,ZHU Zhen,et al.Effect of different rhizobacteria on suppression root-knot nematode (Meloidogyne incognita)of tomato[J].Journal of Nanjing Agricultural University,2011,34(1):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]
[8]黑银秀,朱为民,郭世荣,等.核黄素和接种番茄黄化曲叶病毒对番茄几丁质酶和β-1,3-葡聚糖酶活性的影响[J].南京农业大学学报,2012,35(4):135.[doi:10.7685/j.issn.1000-2030.2012.04.025]
 HEI Yin-xiu,ZHU Wei-min,GUO Shi-rong,et al.Effects of riboflavin and TYLCV inoculation on the activities of chitinase and β-1,3-glucanase in tomato[J].Journal of Nanjing Agricultural University,2012,35(1):135.[doi:10.7685/j.issn.1000-2030.2012.04.025]
[9]于力,郭世荣,阎君,等.BTH处理对番茄幼苗TYLCV抗性、光合特性及防御酶活性的影响[J].南京农业大学学报,2012,35(6):1.[doi:10.7685/j.issn.1000-2030.2012.06.001]
 YU Li,GUO Shi-rong,YAN Jun,et al.Effects of BTH on TYLCV resistance,photosynthetic characteristics and related defense enzymes of tomato seedlings[J].Journal of Nanjing Agricultural University,2012,35(1):1.[doi:10.7685/j.issn.1000-2030.2012.06.001]
[10]柴喜荣,程智慧,孟焕文,等.追肥对农业废弃物有机基质栽培番茄生长发育和养分吸收的影响[J].南京农业大学学报,2013,36(2):20.[doi:10.7685/j.issn.1000-2030.2013.02.004]
 CHAI Xirong,CHENG Zhihui,MENG Huanwen,et al.Influence of top dressing on growth and nutrient absorption of tomato cultivated in organic substrate mixed with agricultural residue[J].Journal of Nanjing Agricultural University,2013,36(1):20.[doi:10.7685/j.issn.1000-2030.2013.02.004]
[11]张川,王亚晨,崔守尧,等.耐裂果与易裂果番茄果实发育过程中果实组织衰老与裂果的关系[J].南京农业大学学报,2016,39(4):534.[doi:10.7685/jnau.201601035]
 ZHANG Chuan,WANG Yachen,CUI Shouyao,et al.The relationship between fruit tissue senescence and fruit cracking in cracking-resistant and susceptible tomato during fruit ripening[J].Journal of Nanjing Agricultural University,2016,39(1):534.[doi:10.7685/jnau.201601035]

备注/Memo

备注/Memo:
收稿日期:2018-02-08。
基金项目:江苏省自然科学基金项目(BK20140712);中央高校基本科研业务费专项资金(KYZ201609)
作者简介:崔守尧,硕士研究生。
通信作者:蒋芳玲,副教授,研究方向为蔬菜栽培生理与分子生物学,E-mail:jfl@njau.edu.cn。
更新日期/Last Update: 1900-01-01