[1]朱林,江昌俊,叶爱华,等.茶树ATP硫化酶和硒半胱氨酸甲基转移酶基因植物表达载体的构建[J].南京农业大学学报,2008,31(2):121-125.[doi:10.7685/j.issn.1000-2030.2008.02.025]
 ZHU Lin,JIANG Chang-jun,YE Ai-hua,et al.Construction of plant expressing vectors of ATP sulfurylase and selenocysteine methyltransferase genes from Camellia sinensis[J].Journal of Nanjing Agricultural University,2008,31(2):121-125.[doi:10.7685/j.issn.1000-2030.2008.02.025]
点击复制

茶树ATP硫化酶和硒半胱氨酸甲基转移酶基因植物表达载体的构建()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
31卷
期数:
2008年2期
页码:
121-125
栏目:
出版日期:
2008-05-30

文章信息/Info

Title:
Construction of plant expressing vectors of ATP sulfurylase and selenocysteine methyltransferase genes from Camellia sinensis
作者:
朱林江昌俊叶爱华李叶云余梅邓威威房婉萍
安徽农业大学农业部茶叶生物化学与生物技术重点开放实验室,安徽,合肥,230036;安徽农业大学资源与环境学院,安徽,合肥,230036;南京农业大学园艺学院,江苏,南京,210095
Author(s):
ZHU Lin JIANG Chang-jun YE Ai-hua LI Ye-yun YU Mei DENG Wei-wei FANG Wan-ping
Key Laboratory of Tea Biochemistry and Biotechnology, Ministry of Agriculture/College of Resources and Environmental Sciences, Anhui Agricultural University, Hefei 230036, China; College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
茶树 ATP硫化酶 硒半胱氨酸甲基转移酶 基因 植物表达载体
Keywords:
Camellia sinensis ATP sulfurylase selenocysteine methyltransferase gene plant expressing vector
分类号:
S571.1
DOI:
10.7685/j.issn.1000-2030.2008.02.025
文献标志码:
A
摘要:
采用能有效转化双子叶植物的表达载体pBI121构建植物硒营养代谢关键酶基因的表达载体,将原载体中GUS基因用茶树ATP硫化酶基因(APS1和APS2)替换,将硒半胱氨酸甲基转移酶基因(CsSMT)连接到pBI121载体上直接与GUS基因相连,分别构建了目的基因植物表达载体pBI-APS1、pBI-APS2和pBI-CsSMT。通过三亲杂交法将重组质粒导入根癌农杆菌LBA4404中,获得转化工程菌,为通过植物基因工程获得富硒农产品打下基础。
Abstract:
Plant expressing vectors of key enzyme genes related to selenium metabolism were constructed by employing the vector pBI121, one of the most effective expressing vectors for dicotyledon in transformation process. In the construction the GUS in pBI121 was substituted by ATP sulfurylase genes(APS1 and APS2)in tea plant, while the selenocysteine methyltransferase of Camellia sinensis(CsSMT)was directly attached to that of GUS, so that expressing vectors of pBI-APS1, pBI-APS2 and pBI-CsSMT were obtained respectively. These engineering bacteria were acquired by introducing recombinant vectors into Agrobacterium tumefaciens LBA 4404(pAL4404)through method of triparental-mating. This practice provides a fundamental investigation for producing enriched-selenium product by the way of the gene engineering.

参考文献/References:

[1] Pickering I J,Wright C,Bubner B.Chemical form and distribution of selenium and sulfur in the selenium hyperaccumulator Astragalus bisulcatus[J].Plant Physiology.2003,131:1460-1467
[2] 萨姆布鲁克·J,拉塞尔 D W,黄培堂.分子克隆实验指南[M].北京:科学出版社.2002
[3] 王关林,方宏筠.植物基因工程[M].北京:科学出版社.2002
[4] 王朝霞.茶树巯基蛋白酶抑制剂基因的克隆及表达分析[D].合肥:安徽农业大学.2006
[5] Pilon-Smits E A H,Hwang S,Lytle C M.Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake,reduction,and tolerance[J].Plant Physiology.1999,119:123-132
[6] Terry N,Zayed A M,de Souza M P.Selenium in higher plants[J].Annual Review of Plant Physiology and Plant Molecular Biology.2000,51:401-432
[7] Neuhierl B,B(o)ck A.On the mechanism of selenium tolerance in selenium-accumulating plants purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus[J].European Journal of Biochemistry.1996,239:235-238
[8] Neuhierl B,Thanbichler M,Lottspeich F.A family of S-methylmethionine-dependent thiol/selenol methyltransferases:role in selenium tolerance and evolutionary relation[J].Journal of Biological Chemistry.1999,274:5407-5414
[9] Lyi S M,Heller L I,Rutzke M.Molecular and biochemical characterization of the selenocysteine Se-methyltransferase gene and Se-methylselenocysteine synthesis in broccoli[J].Plant Physiology.2005,138:409-420
[10] LeDuc D L,Tarun A S,Montes-Bayon M.Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation[J].Plant Physiology.2004,135:377-383
[11] Zhu L,Deng W W,Ye A H.Cloning of two cDNAs encoding a family of ATP sulfurylase from Camellia sinensis related to selenium or sulfur metabolism and functional expression in Escherichia coli[J].Plant Physiology and Biochemistry.2007
[12] Zhu L,Jiang C J,Deng W W.Cloning and expression of selenocysteine methyltransferase cDNA from Camellia sinensis[J].Acta Physiologiae Plantarum.2008,30:167-174

相似文献/References:

[1]李远华,江昌俊,余有本.茶树β-葡萄糖苷酶基因mRNA的表达[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.022]
[2]韦朝领,江昌俊,陶汉之,等.茶树紫黄素脱环氧化酶基因的cDNA 克隆及其生物信息学分析[J].南京农业大学学报,2003,26(1):14.[doi:10.7685/j.issn.1000-2030.2003.01.004]
 WEI Chao ling,JIANG Chang jun,TAO Han zhi,et al.Cloning and bioinformatics analysis of sequence signature of violaxanthin de-epoxidase cDNA in tea plant ( Camellia sinensis (L.) O.Kuntzes )[J].Journal of Nanjing Agricultural University,2003,26(2):14.[doi:10.7685/j.issn.1000-2030.2003.01.004]
[3]江昌俊,李叶云,王朝霞.茶树鲜叶中β-葡萄糖苷酶提取条件的研究[J].南京农业大学学报,2000,23(2):93.[doi:10.7685/j.issn.1000-2030.2000.02.023]
 Jiang Changjun,Li Yeyun,Wang Zhaoxia.Study on the extraction conditions of β?glucosidase in fresh leaves of tea plant[J].Journal of Nanjing Agricultural University,2000,23(2):93.[doi:10.7685/j.issn.1000-2030.2000.02.023]
[4]余有本,江昌俊,王朝霞,等.茶树咖啡碱合酶cDNA 在大肠杆菌中的表达[J].南京农业大学学报,2004,27(4):105.[doi:10.7685/j.issn.1000-2030.2004.04.024]
 YU You-ben,JIANG Chang-jun,WANG Zhao-xia,et al.Expression of tea caffeine synthase cDNA in Escherichia coli[J].Journal of Nanjing Agricultural University,2004,27(2):105.[doi:10.7685/j.issn.1000-2030.2004.04.024]
[5]阮旭,张玥,杨忠星,等.果茶间作模式下茶树光合特征参数的日变化[J].南京农业大学学报,2011,34(5):53.[doi:10.7685/j.issn.1000-2030.2011.05.010]
 RUAN Xu,ZHANG Yue,YANG Zhong-xing,et al.Diurnal variation of photosynthetic characteristic parameters of tea plant under fruit-tea intercropping patterns[J].Journal of Nanjing Agricultural University,2011,34(2):53.[doi:10.7685/j.issn.1000-2030.2011.05.010]
[6]房婉萍,张玥,阮光兴,等.茶树CsH1基因结构及其内含子信息分析[J].南京农业大学学报,2012,35(4):37.[doi:10.7685/j.issn.1000-2030.2012.04.007]
 FANG Wan-ping,ZHANG Yue,RUAN Guang-xing,et al.Analysis of genomic structure and introns of CsH1 gene from tea plant[J].Journal of Nanjing Agricultural University,2012,35(2):37.[doi:10.7685/j.issn.1000-2030.2012.04.007]
[7]刘腾腾,赵强,郜红建,等.有机酸与根表铁膜对茶树吸收和富集氟的影响[J].南京农业大学学报,2013,36(1):72.[doi:10.7685/j.issn.1000-2030.2013.01.013]
 LIU Tengteng,ZHAO Qiang,GAO Hongjian,et al.Effects of organic acids and iron plaque outside roots on absorption and accumulation of fluoride in tea plants[J].Journal of Nanjing Agricultural University,2013,36(2):72.[doi:10.7685/j.issn.1000-2030.2013.01.013]
[8]胡雲飞,张玥,张彩丽,等.茶树根系内生真菌与根际土壤真菌的季节多样性分析[J].南京农业大学学报,2013,36(3):41.[doi:10.7685/j.issn.1000-2030.2013.03.007]
 HU Yunfei,ZHANG Yue,ZHANG Caili,et al.Diversity analysis of the endophytic fungi in root and fungi in rhizosphere soil of tea plant in different seasons[J].Journal of Nanjing Agricultural University,2013,36(2):41.[doi:10.7685/j.issn.1000-2030.2013.03.007]
[9]吴致君,卢莉,黎星辉,等.茶树AP2/ERF-B3类转录因子基因的克隆与表达特性分析[J].南京农业大学学报,2014,37(4):67.[doi:10.7685/j.issn.1000-2030.2014.04.010]
 WU Zhijun,LU Li,LI Xinghui,et al.Isolation and expression profiles analysis of AP2/ERF-B3 group transcription factor from Camellia sinensis[J].Journal of Nanjing Agricultural University,2014,37(2):67.[doi:10.7685/j.issn.1000-2030.2014.04.010]
[10]张显晨,杨天元,王玉梅,等.Ca2+信号在DIDS(4,4-二异硫氰-2,2-二磺酸)抑制茶树吸收氟的功能研究[J].南京农业大学学报,2016,39(3):441.[doi:10.7685/jnau.201510029]
 ZHANG Xianchen,YANG Tianyuan,WANG Yumei,et al.The role of Ca2+ signal on DIDS(4, 4-diisothiocyanostilbene-2, 2-disulfonic acid)-inhibited fluoride absorption in tea plants(Camellia sinensis L.)[J].Journal of Nanjing Agricultural University,2016,39(2):441.[doi:10.7685/jnau.201510029]

备注/Memo

备注/Memo:
安徽省自然科学基金项目(050410102);农业部茶叶生物化学与生物技术重点开放实验室开放项目(1tbb200602035)
更新日期/Last Update: 2008-05-30