[1]陈桂云,吴威,黄玉萍,等.基于短波近红外光谱技术的原蜜高果糖浆掺假度鉴别[J].南京农业大学学报,2014,37(6):165-170.[doi:10.7685/j.issn.1000-2030.2014.06.025]
 CHEN Guiyun,WU Wei,HUANG Yuping,et al.Determination of raw honey adulterated with high fructose corn syrup based on short wave near-infrared spectroscopy[J].Journal of Nanjing Agricultural University,2014,37(6):165-170.[doi:10.7685/j.issn.1000-2030.2014.06.025]
点击复制

基于短波近红外光谱技术的原蜜高果糖浆掺假度鉴别()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
37卷
期数:
2014年6期
页码:
165-170
栏目:
出版日期:
2014-11-17

文章信息/Info

Title:
Determination of raw honey adulterated with high fructose corn syrup based on short wave near-infrared spectroscopy
作者:
陈桂云 吴威 黄玉萍 陈坤杰
南京农业大学工学院, 江苏 南京 210031
Author(s):
CHEN Guiyun WU Wei HUANG Yuping CHEN Kunjie
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
关键词:
蜂蜜短波近红外光谱掺假高果糖浆
Keywords:
honeyshort wave near-infrared spectroscopyadulterationhigh fructose corn syrup
分类号:
O657.3
DOI:
10.7685/j.issn.1000-2030.2014.06.025
摘要:
虽然全波段近红外光谱信息量丰富,但应用成本过高。发展短波近红外蜂蜜掺假鉴别技术,更能适应中国蜂蜜市场频繁检测需要。将高果糖浆掺入9种原蜜,制备得153个不同掺假度的样本。以透射方式采集了样本600~1 100 nm波段的近红外光谱。用Rc/SECV值作为定标因子确定并优化模型,用预测指数RP/SEP值评价模型预测能力。在保留外部评价同时定义模型综合评价指数C对优选的10个模型予以综合评价。用tansig函数和logsig函数作为网络隐含层和输出层转化函数,建立鉴别蜂蜜高果糖浆掺假度的短波近红外人工神经网络模型。结果表明:遴选出的最优模型(组合小波去噪、一阶导数、均值中心化和基线校正预处理,欧氏距离KS分类,690~1 019 nm波段,ANN主因子数和隐含层节点数为15和12),其综合评价指数C=4.690,模型可评判为好。校正集和测试集的决定系数分别达到了0.939和0.970。结论:深入挖掘短波近红外信息,用以定量鉴别蜂蜜掺假程度在技术上具有可行性。可据此开发更节约的短波近红外便携仪用于市场中蜂蜜掺假检测。
Abstract:
It is more feasible to develop a short wave near-infrared spectroscopy for its lower cost than entire NIR spectroscopy in China honey market,although the latter is much richer in information. The aim of this study is to quantitatively determine raw honey adulterated with high fructose corn syrup using short wave NIR spectroscopy. 153 samples with different degree of adulteration were prepared by adding high fructose corn syrup into the nine raw honeys. Near-infrared spectra of all these samples were recorded in transmittance mode from 600 to 1 100 nm. The function for hidden layer of network was tansig and that for output layer was logsig. The artificial neural network model was developed based on short wave near-infrared spectroscopy using the value of Rc/SECV as calibration index and using that of RP/SEP as index to assess its adaptability. A kind of more comprehensive evaluation index was defined as supplement to the external evaluation of the selected ten models. The ANN model with parameter of Euclidean KS classification,wavelet denoising,1st derivative,centering and baseline correction of spectral data,690-1 019 nm and ANN 15,12 was finally assessed good since its total evaluation index was 4.690. The determination coefficient of its calibration set and test set reached 0.939 and 0.970,respectively. Conclusions:The result showed the feasibility of quantitative identification of adulterated honey using short wave near-infrared spectroscopy by data mining,which might contribute to the development of lower-cost portable NIR spectrometers of short wave range for identifying adulterated honey.

参考文献/References:

[1] 中华人民共和国卫生部. GB 14963—2011 食品安全国家标准 蜂蜜[S]. 北京:中国标准出版社,2011[Chinese Ministry of Health. GB 14963-2011 National food safety standards honey[S]. Beijing:Standards Press of China,2011(in Chinese)]
[2] European Commission. Council Directive 2001/110/EC of 20 December 2001 relating to honey[S]. Official Journal of the European Communities,2002:47-52
[3] Codex Alimentarius Commission. Codex STAN,12-1981,Rev.1(1987),Rev.2,Revised codex standard for honey[S]. Codex Alimentarius Commission,2001:1-8
[4] 中华人民共和国国家质量监督检验检疫总局. GB/T 18932.1—2002 蜂蜜中碳-4植物糖含量测定方法——稳定碳同位素比率法[S]. 北京:中国标准出版社,2003[Chinese General Administration of Quality Supervision,Inspection and Quarantine. GB/T 18932.1-2002 Method for the determination of C-4 plant sugars in honey—stable carbon isotope ratio method[S]. Beijing:Standards Press of China,2003(in Chinese)]
[5] Downey G,Fouratier V,Kelly J D. Detection of honey adulteration by addition of fructose and glucose using near infrared transflectance spectroscopy[J]. Journal of Near Infrared Spectroscopy,2003,11(6):447-456
[6] Kelly J D,Petisco C,Downey G. Potential of near-infrared transflectance spectroscopy to detect adulteration of Irish honey by beet invert syrup and high fructose corn syrup[J]. Journal of Near Infrared Spectroscopy,2006,14(2):139-146
[7] 陈兰珍,赵静,叶志华,等. 蜂蜜真伪的近红外光谱鉴别研究[J]. 光谱学与光谱分析,2008,28(11):2565-2568[Chen L Z,Zhao J,Ye Z H,et al. Determination of adulteration in honey using near-infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2008,28(11):2565-2568(in Chinese with English abstract)]
[8] Chen L Z,Xue X F,Ye Z H,et al. Determination of Chinese honey adulterated with high fructose corn syrup by near infrared spectroscopy[J]. Food Chemistry,2011,128:1110-1114
[9] Mishra S,Kamboj U,Kaur H,et al. Detection of jaggery syrup in honey using near-infrared spectroscopy[J]. International Journal of Food Sciences and Nutrition,2010,61(3):306-315
[10] Zhu X R,Li S F,Shan Y,et al. Detection of adulterations such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics[J]. Journal of Food Engineer,2010,101(1):92-97
[11] 屠振华,朱大洲,籍保平,等. 基于近红外光谱技术的蜂蜜掺假识别[J]. 农业工程学报,2011,27(11):382-387[Tu Z H,Zhu D Z,Ji B P,et al. Adulteration detection of honey based on near-infrared spectroscopy[J]. Transactions of the CSAE,2011,27(11):382-387(in Chinese with English abstract)]
[12] 魏小梅,邵玉芳,应寻源. 枇杷蜂蜜中饴糖的近红外光谱检测[J]. 食品工业科技,2012,33(10):85-87[Wei X M,Shao Y F,Ying X Y. Detection of maltose adulteration in loquat honey by near infrared spectroscopy[J]. Science and Technology of Food Industry,2012,33(10):85-87(in Chinese with English abstract)]
[13] 李水芳,文瑞芝,尹永,等. 近红外光谱法定性定量检测蜂蜜中掺入甜菜糖浆的可行性研究[J]. 光谱学与光谱分析,2013,33(10):2637-2641[Li S F,Wen R Z,Yin Y,et al. Qualitative and quantitative detection of beet syrup adulteration of honey by near-infrared spectroscopy:a feasibility study[J]. Spectroscopy and Spectral Analysis,2013,33(10):2637-2641(in Chinese with English abstract)]
[14] Mouazen A M,Al-Walaan N. Glucose adulteration in Saudi honey with visible and near infrared spectroscopy[J]. International Journal of Food Properties,2014,17(10):2263-2274
[15] 中华人民共和国国家质量监督检验检疫总局. GB/T 18932.22—2003 蜂蜜中果糖、葡萄糖、蔗糖、麦芽糖含量的测定方法液相色谱示差折光检测法[S]. 北京:中国标准出版社,2004[Chinese General Administration of Quality Supervision,Inspection and Quarantine. GB/T 18932.22-2003 Method for the determination of fructose,glucose,sucrose,maltose in honey-liquid chromatography differential refractive index detection method[S]. Beijing:Standards Press of China,2004(in Chinese)]
[16] 潘磊庆,屠康,刘明,等. 基于声学响应和BP神经网络检测鸡蛋裂纹[J]. 南京农业大学学报,2010,33(6):115-118. doi:10.7685/j.issn.1000-2030.2010.06.022[Pan L Q,Tu K,Liu M,et al. Eggshell crack detection based on acoustic response and BP neural network[J]. Journal of Nanjing Agricultural University,2010,33(6):115-118(in Chinese with English abstract)]
[17] 林洁,陈效民,张勇,等. 基于BP神经网络的太湖典型农田土壤水分动态模拟[J]. 南京农业大学学报,2012,35(4):140-144. doi:10.7685/j.issn.1000-2030.2012.04.026[Lin J,Chen X M,Zhang Y,et al. Simulation of soil moisture dynamics based on the BP neural network in the typical farmland of Tai Lake region[J]. Journal of Nanjing Agricultural University,2012,35(4):140-144(in Chinese with English abstract)]
[18] Theodoridis S,Koutroumbas K. Pattern recognition and neural networks[M]//Machine Learning and Its Applications. Berlin:Springer,2001:169-195
[19] 潘磊庆,刘明,韩东海,等. 水蜜桃货架期内糖度的近红外光谱检测[J]. 南京农业大学学报,2013,36(4):116-120. doi:10.7685/j.issn.1000-2030.2013.04.019[Pan L Q,Liu M,Han D H,et al. Detection of the sugar content of juicy peach during shelf life by near infrared spectroscopy technology[J]. Journal of Nanjing Agricultural University,2013,36(4):116-120(in Chinese with English abstract)]
[20] 王刚,祝诗平,阚建全,等. 花椒挥发油含量的近红外光谱无损检测[J]. 农业机械学报,2008,39(3):79-81[Wang G,Zhu S P,Kan J Q,et al. Nondestructive detection of volatile oil content in zanthoxylum bungeagum maxim by near infrared spectroscopy[J]. Transactions of the Chinese Society for Agricultural Machinery,2008,39(3):79-81(in Chinese with English abstract)]
[21] Sakudo A,Kato Y H,Kuratsune H,et al. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer[J]. Clinica Chimica Acta,2009,408(1):123-127
[22] Liu H,Xiang B,Qu L. Structure analysis of ascorbic acid using near-infrared spectroscopy and generalized two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure,2006,794(1):12-17
[23] Büning-Pfaue H. Analysis of water in food by near infrared spectroscopy[J]. Food Chemistry,2003,82(1):107-115
[24] Abe H,Kusama T,Kawano S,et al. Analysis of hydrogen bonds in water using spectrum decomposition technique applied to near-infrared absorption spectra[J]. Journal Spectroscopical Society of Japan,1995,44:247-253

相似文献/References:

[1]陈桂云,吴威,陈坤杰.温度、水分和掺假对蜂蜜黏度的影响[J].南京农业大学学报,2018,41(3):570.[doi:10.7685/jnau.201708001]
 CHEN Guiyun,WU Wei,CHEN Kunjie.Effects of temperature, moisture content and adulteration on honey viscosity[J].Journal of Nanjing Agricultural University,2018,41(6):570.[doi:10.7685/jnau.201708001]

备注/Memo

备注/Memo:
收稿日期:2014-5-31。
基金项目:江苏省农机局农机基金项目(GXZ11002)
作者简介:陈桂云,讲师,博士研究生。
通讯作者:陈坤杰,教授,博导,研究方向为农产品检测,E-mail:chenkunjie@njau.edu.cn。
更新日期/Last Update: 1900-01-01