[1]李博,李伟,张昊,等.日粮高胆碱水平对宫内发育迟缓猪背最长肌糖酵解的影响[J].南京农业大学学报,2015,38(2):324-329.[doi:10.7685/j.issn.1000-2030.2015.02.022]
 LI Bo,LI Wei,ZHANG Hao,et al.Effects of high dietary concentrations of choline on longissimus dorsi muscle glycolysis in intrauterine growth retardation pigs[J].Journal of Nanjing Agricultural University,2015,38(2):324-329.[doi:10.7685/j.issn.1000-2030.2015.02.022]
点击复制

日粮高胆碱水平对宫内发育迟缓猪背最长肌糖酵解的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
38卷
期数:
2015年2期
页码:
324-329
栏目:
OA栏目
出版日期:
2015-03-23

文章信息/Info

Title:
Effects of high dietary concentrations of choline on longissimus dorsi muscle glycolysis in intrauterine growth retardation pigs
作者:
李博 李伟 张昊 张莉莉 王恬
南京农业大学动物科技学院, 江苏 南京 210095
Author(s):
LI Bo LI Wei ZHANG Hao ZHANG Lili WANG Tian
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
胆碱宫内发育迟缓背最长肌糖酵解
Keywords:
cholineintrauterine growth retardation(IUGR)longissimus dorsi muscleglycolysis
分类号:
S828.9+1
DOI:
10.7685/j.issn.1000-2030.2015.02.022
摘要:
[目的]研究添加高胆碱日粮对宫内发育迟缓(IUGR)猪肌肉糖酵解的作用。[方法]从正常分娩的12头母猪中选择正常初生体质量(normal birth weight,NBW)和IUGR新生仔猪各12头,所有仔猪于23日龄断奶。试验采用2×2因子设计,NBW仔猪和IUGR仔猪各分别饲喂基础日粮(正常胆碱水平,NC)与添加胆碱的试验日粮(高胆碱水平,HC),即NBW+NC、NBW+HC、IUGR+NC与IUGR+HC共4组,每组6头猪,饲养至200日龄结束,称体质量后随机选择4头屠宰。[结果]IUGR猪肌糖原含量显著低于正常初生体质量仔猪,其乳酸含量及糖酵解潜值显著升高(P<0.05),乳酸脱氢酶活性有提高的趋势(P=0.057),糖原合酶(GS)的表达量显著降低(P<0.05),葡萄糖转运载体(GLUT4)mRNA表达量有下降趋势(P=0.074),M2-型丙酮酸激酶(PKM2)mRNA及M-型6磷酸果糖激酶(PFKM)mRNA的表达量显著增加(P<0.05)。高水平胆碱有使IUGR猪肌糖原含量升高(P=0.051)、乳酸含量(P=0.091)和糖酵解潜值(P=0.074)降低的趋势;高水平胆碱促使IUGR猪肌酸激酶活性显著升高(P<0.05),GS和GLUT4 mRNA的表达量显著升高(P<0.05),而PFKM mRNA表达量有下降的趋势(P=0.087)。[结论]IUGR猪的肌肉糖酵解关键酶表达量显著升高,糖原合成能力下降,乳酸含量显著升高,添加高水平胆碱可缓解IUGR猪肌糖原的大量分解,表现为糖酵解关键酶增加,乳酸含量下降,可见胆碱对提高肉品质有积极作用。
Abstract:
[Objectives]To investigate the effects of dietary concentrations of choline and intrauterine growth retardation(IUGR)on muscle glycolysis of pigs. [Methods]Twelve normal body weight(NBW)piglets and twelve IUGR piglets were selected according to birth weight. At weaning(23 days of age), both NBW and IUGR piglets were fed based diet(normal choline, NC)or high choline diet(HC). Thus, all piglets were distributed into 4 treatments(NBW+NC, NBW+HC, IUGR+NC and IUGR+HC)×6 piglets. [Results]The glycogen of IUGR pigs was decreased significantly(P<0.05), and the content of lactic acid(LC)and glycolytic potential(GP)were markedly increased in IUGR pigs(P<0.05), while compared with NBW pigs, there was a slight increase in the activity of lactate dehydrogenase(LDH)of IUGR pigs(P=0.057). A tendency toward decreased glucose transporters-4(GLUT4)mRNA expression was observed in the muscle of IUGR pigs(P=0.074), whilst IUGR significantly decreased the glycogen synthase(GS)mRNA expression, and increased pyruvate kinase M2(PKM2), phosphofructokinase M(PFKM) mRNA expression in muscle compared to NBW(P<0.05). Consumption of the choline diet had a trend to increase muscle glycogen of pigs(P=0.051), and also a tend to decrease the content of LC(P=0.091)and GP(P=0.074), CK activity was significantly increased after choline treatment(P<0.05), and there was a significant increase in GS mRNA and GLUT4 mRNA expression(P<0.05), but a slight decrease in PFKM mRNA expression fed by dietary choline(P=0.087). [Conclusions]IUGR could decrease glycogen synthesis, as well as increase the content of lactic acid by increasing the key enzyme of glycolytic expression, while high concentrations of choline have a positive way to relieve glycogen decomposition, by the increasing trend of the key enzyme of glycolysis and declined levels of lactic.

参考文献/References:

[1] Bobak M. Outdoor air pollution, low birth weight, and prematurity[J]. Environ Health Perspect, 2000, 108(2):173-176
[2] Brenseke B, Prater M R, Bahamonde J, et al. Current thoughts on maternal nutrition and fetal programming of the metabolic syndrome[J]. J Pregnancy, 2013. doi:10.1155/2013/368461
[3] Rosenberg A. The IUGR newborn[J]. Semin Perinatol, 2008, 32(3):219-224
[4] Fernandez X, Sante V, Baeza E, et al. Effects of the rate of muscle post mortem pH fall on the technological quality of turkey meat[J]. Br Poult Sci, 2002, 43(2):245-252
[5] Corbin K D, Zeisel S H. The nutrigenetics and nutrigenomics of the dietary requirement for choline[J]. Prog Mol Biol Transl Sci, 2012, 108:159-177
[6] Medici V, Shibata N M, Kharbanda K K, et al. Maternal choline modifies fetal liver copper, gene expression, DNA methylation, and neonatal growth in the tx-j mouse model of Wilson disease[J]. Epigenetics, 2014, 9(2):286-296
[7] Wu P, Jiang J, Liu Y, et al. Dietary choline modulates immune responses, and gene expressions of TOR and eIF4E-binding protein2 in immune organs of juvenile Jian carp(Cyprinus carpio var.Jian)[J]. Fish Shellfish Immunol, 2013, 35(3):697-706
[8] Xu R J, Mellor D J, Birtles M J, et al. Impact of intrauterine growth retardation on the gastrointestinal tract and the pancreas in newborn pigs[J]. J Pediatr Gastroenterol Nutr, 1994, 18(2):231-240
[9] 张勇. 丙酮酸、肌酸及丙酮酸肌酸对肉鸡氨基酸谱的影响及相关酶活性的研究[D]. 南京:南京农业大学, 2010:28-31 [Zhang Y. Effect of pyruvate, creatine and creatine-pyuvate on profile of amino acids and relative enzyme activity in broiler chicken in China[D]. Nanjing:Nanjing Agricultural University, 2010:28-31]
[10] Stephens J W, Dikeman M E, Unruh J A, et al. Effects of oral administration of sodium citrate or acetate to pigs on blood parameters, postmortem glycolysis, muscle pH decline, and quality attributes of pork[J]. J Anim Sci, 2008, 86(7):1669-1677
[11] Thorn S R, Regnault T R, Brown L D, et al. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle[J]. Endocrinology, 2009, 150(7):3021-3030
[12] Wadley G D, Siebel A L, Cooney G J, et al. Uteroplacental insufficiency and reducing litter size alters skeletal muscle mitochondrial biogenesis in a sex-specific manner in the adult rat[J]. Am J Physiol Endocrinol Metab, 2008, 294(5):861-869
[13] Limesand S W, Rozance P J, Smith D, et al. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction[J]. Am J Physiol Endocrinol Metab, 2007, 293(6):1716-1725
[14] 吴娟, 程灵豪, 高峰, 等. 一水肌酸对肉鸭胴体组成及肉品质的影响[J]. 南京农业大学学报, 2011, 34(4):100-104. doi:10.7685/j.issn.1000-2030.2011.04.018 [Wu J, Cheng L H, Gao F, et al. Effects of creatine monohydrate on carcass composition and meat quality in ducks[J]. Journal of Nanjing Agricultural University, 2011, 34(4):100-104(in Chinese with English abstract)]
[15] Magnusson A L, Powell T, Wennergren M, et al. Glucose metabolism in the human preterm and term placenta of IUGR fetuses[J]. Placenta, 2004, 25(4):337-346
[16] Thorn S R, Sekar S M, Lavezzi J R, et al. A physiological increase in insulin suppresses gluconeogenic gene activation in fetal sheep with sustained hypoglycemia[J]. Am J Physiol Regul Integr Comp Physiol, 2012, 303(8):861-869
[17] 边连全, 张冬梅, 安磊旭, 等. 肉碱与甜菜碱对育肥猪胴体、肉品质及肝脏营养成分的影响[J]. 中国饲料, 2009(4):28-30 [Bian L Q, Zhang D M, An L X, et al. Effects of carnitine and betaine on the carass, meat quality and liver nutritional ingredient in pigs[J]. China Feed, 2009(4):28-30]
[18] Teodoro J S, Rolo A P, Duarte F V, et al. Differential alterations in mitochondrial function induced by a choline-deficient diet:understanding fatty liver disease progression[J]. Mitochondrion, 2008, 8(56):367-376
[19] Stefanovski D, Richey J M, Woolcott O, et al. Consistency of the disposition index in the face of diet induced insulin resistance:potential role of FFA[J]. PLoS One, 2011, 6(3):e18134
[20] Brand M D, Nicholls D G. Assessing mitochondrial dysfunction in cells[J]. Biochem J, 2011, 435(2):297-312
[21] Lee M H, Jeon Y J, Lee S M, et al. Placental gene expression is related to glucose metabolism and fetal cord blood levels of insulin and insulin-like growth factors in intrauterine growth restriction[J]. Early Hum Dev, 2010, 86(1):45-50
[22] Nakajima Y, Masaoka N. Evaluation of creatine kinase, lactate dehydrogenase, and amylase concentrations in umbilical blood of preterm infants after long-term tocolysis[J]. Obstet Gynecol Int, 2014. doi:10.1155/2014/278379
[23] Baird M F, Graham S M, Baker J S, et al. Creatine-kinase- and exercise-related muscle damage implications for muscle performance and recovery[J]. J Nutr Metab, 2012. doi:10.1155/2012/960363
[24] 陈韬. 宰后肌肉蛋白质和组织结构变化与冷却猪肉持水性的关系研究[D]. 南京:南京农业大学, 2005:31 [Chen T. Study on relationship of mucle protein and structural changes postmortem and water-holding capacity of chilled pork in China[D]. Nanjing:Nanjing Agricultural University, 2005:31(in Chinese with English abstract)]
[25] 周秀菊, 刘党生, 蒋宇扬. 肌酸激酶结构与功能研究进展[J]. 沈阳药科大学学报, 2002, 19(5):386-390 [Zhou X J, Liu D S, Jiang Y Y, et al. Survey of studies on the structures and fucnctions of creatine kinase[J]. Journal of Shenyang Pharmaceut ical University, 2002, 19(5):386-390(in Chinese with English abstract)]
[26] Akki A, Su J, Yano T, et al. Creatine kinase overexpression improves ATP kinetics and contractile function in postischemic myocardium[J]. Am J Physiol Heart Circ Physiol, 2012, 303(7):844-852
[27] Perry C G, Kane D A, Herbst E A, et al. Mitochondrial creatine kinase activity and phosphate shuttling are acutely regulated by exercise in human skeletal muscle[J]. J Physiol, 2012, 590(21):5475-5486
[28] 王佳甲, 陶陶, 栾文康, 等. siRNA沉默PKM2抑制胶质瘤U87细胞的增殖和糖代谢能力[J]. 江苏医药, 2013(10):1117-1119 [Wang J J, Tao T, Luan W K, et al. Silencing PKM2 siRNA inhibits the proliferation and glucose metabolism of glioma U87 cells[J]. Jiangsu Medicine Journal, 2013(10):1117-1119]
[29] Tsirka A E, Gruetzmacher E M, Kelley D E, et al. Myocardial gene expression of glucose transporter 1 and glucose transporter 4 in response to uteroplacental insufficiency in the rat[J]. J Endocrinol, 2001, 169(2):373-380
[30] Hartwell J R, Cecava M J, Donkin S S. Rumen undegradable protein, rumen-protected choline and mRNA expression for enzymes in gluconeogenesis and ureagenesis in periparturient dairy cows[J]. J Dairy Sci, 2001, 84(2):490-497

相似文献/References:

[1]沈峰,张莉莉,霍永久,等.酪蛋白酶解物对宫内生长迟缓新生仔猪小肠生长发育的影响[J].南京农业大学学报,2006,29(3):59.[doi:10.7685/j.issn.1000-2030.2006.03.012]
 SHEN Feng,ZHANG Li-li,HUO Yong-jiu,et al.Effects of casein hydrolysate on the intestinal growth and development in intrauterine growth retardation neonatal piglets[J].Journal of Nanjing Agricultural University,2006,29(2):59.[doi:10.7685/j.issn.1000-2030.2006.03.012]
[2]黄强,徐稳,何进田,等.日粮补充亮氨酸对超早期断奶宫内发育迟缓仔猪内源消化酶活性及胰腺抗氧化能力的影响[J].南京农业大学学报,2017,40(1):123.[doi:10.7685/jnau.201511032]
 HUANG Qiang,XU Wen,HE Jintian,et al.Effects of dietary leucine supplementation on activities of endogenous digestive enzymes and pancreas antioxidant capacity in intrauterine growth retardation early weaning pigs[J].Journal of Nanjing Agricultural University,2017,40(2):123.[doi:10.7685/jnau.201511032]
[3]黄强,白凯文,徐稳,等.日粮添加亮氨酸对宫内发育迟缓断奶仔猪小肠葡萄糖吸收和能量代谢的影响[J].南京农业大学学报,2017,40(2):339.[doi:10.7685/jnau.201602030]
 HUANG Qiang,BAI Kaiwen,XU Wen,et al.Effects of leucine supplementation on the small intestinal glucose absolution and energy metabolism in weanling piglets with intrauterine growth retardation[J].Journal of Nanjing Agricultural University,2017,40(2):339.[doi:10.7685/jnau.201602030]
[4]冯程程,白凯文,王安谙,等.日粮添加二甲基甘氨酸钠对宫内发育迟缓断奶仔猪肝脏抗氧化能力及免疫指标的影响[J].南京农业大学学报,2019,42(2):336.[doi:10.7685/jnau.201806011]
 FENG Chengcheng,BAI Kaiwen,WANG Anan,et al.Effect of N,N-dimethylglycine sodium salt supplementation on hepatic antioxidant capacity and immune indices in intrauterine growth retardation weanling piglets[J].Journal of Nanjing Agricultural University,2019,42(2):336.[doi:10.7685/jnau.201806011]

备注/Memo

备注/Memo:
收稿日期:2014-5-18。
基金项目:国家自然科学基金项目(31272454)
作者简介:李博,硕士研究生。
通讯作者:王恬,教授,博导,研究方向为动物营养与饲料科学,E-mail:twang18@163.com。
更新日期/Last Update: 1900-01-01