[1]张显晨,杨天元,王玉梅,等.Ca2+信号在DIDS(4,4-二异硫氰-2,2-二磺酸)抑制茶树吸收氟的功能研究[J].南京农业大学学报,2016,39(3):441-447.[doi:10.7685/jnau.201510029]
 ZHANG Xianchen,YANG Tianyuan,WANG Yumei,et al.The role of Ca2+ signal on DIDS(4, 4-diisothiocyanostilbene-2, 2-disulfonic acid)-inhibited fluoride absorption in tea plants(Camellia sinensis L.)[J].Journal of Nanjing Agricultural University,2016,39(3):441-447.[doi:10.7685/jnau.201510029]
点击复制

Ca2+信号在DIDS(4,4-二异硫氰-2,2-二磺酸)抑制茶树吸收氟的功能研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
39卷
期数:
2016年3期
页码:
441-447
栏目:
出版日期:
2016-05-06

文章信息/Info

Title:
The role of Ca2+ signal on DIDS(4, 4-diisothiocyanostilbene-2, 2-disulfonic acid)-inhibited fluoride absorption in tea plants(Camellia sinensis L.)
作者:
张显晨1 杨天元2 王玉梅3 陈曦3 郜红建3
1. 安徽农业大学茶树生物学与资源利用国家重点实验室, 安徽 合肥 230036;
2. 南京农业大学资源与环境科学学院, 江苏 南京 210095;
3. 安徽农业大学资源与环境学院, 安徽 合肥 230036
Author(s):
ZHANG Xianchen1 YANG Tianyuan2 WANG Yumei3 CHEN Xi3 GAO Hongjian3
1. State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China;
2. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China;
3. School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
关键词:
Ca2+跨膜运输Ca2+荧光强度44-二异硫氰-22-二磺酸茶树
Keywords:
Ca2+ effluxCa2+ fluorescence intensityfluoride4 4-diisothiocyanostilbene-2 2-disulfonic acid(DIDS)tea plant
分类号:
S571.1
DOI:
10.7685/jnau.201510029
摘要:
[目的] 茶叶富含有利于人体健康的多糖、咖啡因、多酚和氨基酸等有益物质,但茶树能够在正常含氟(F)土壤中超积累F,导致过量饮茶易诱发氟斑牙和氟骨病的发生。因此,降低茶叶中的F含量对人体健康具有重要意义。[方法] 以‘福鼎’大白茶茶籽为研究对象,通过激光共聚焦和非损伤微测技术研究Ca2+信号在阴离子通道抑制剂4,4-二异硫氰-2,2-二磺酸(DIDS)抑制茶树吸收F过程中的作用。[结果] 随着DIDS前处理时间的延长,显著削弱了茶树对F的吸收富集。同时DIDS调控了茶树根尖成熟区区域A和B的Ca2+荧光强度的反向变化,区域A从858.42降低至565.42 AU,区域B从499.28升至570.42 AU;同时DIDS显著刺激了茶树根部成熟区Ca2+的跨膜运输,平均外排量从静息量的9.43提高至350.35 pmol·cm-2·s-1。此外,Ca2+螯合剂EGTA前处理分别削弱了DIDS对Ca2+信号强度的增强和对F的吸收抑制作用。[结论] 茶树根尖成熟区Ca2+信号可能通过跨膜运输参与了DIDS抑制茶树对F的吸收富集。
Abstract:
[Objectives] Tea plant is beneficial for people’s health due to the elements of polysaccharide, caffeine, polyphenol and amino acid. However, tea plants(Camellia sinensis L.)can accumulate large amounts of fuoride(F), while the over-intake of fluoride through drinking tea can cause dental fluorosis and fluorosis of bone. Therefore, the research of reducing F content in tea plants has an important effect on human’s body health.[Methods] In this study, ‘Fuding’ variety of tea plant was used as materials to carry out the experiments. Using laser confocal scanning microscopy(LCSM)and Non-invasive Micro-test Technique(NMT)approaches, the role of Ca2+ signal on DIDS(4, 4-diisothiocyanostilbene-2, 2-disulfonic acid)-inhibited F accumulation in tea plants was investigated.[Results] The pretreatment of DIDS significantly inhibited F accumulation in tea plants. DIDS altered Ca2+ fluorescence intensity in the mature zone of tea root, which decreased from 858.42 to 565.42 AU in region A and increased from 499.28 to 570.42 AU in region B. In addition, DIDS significantly stimulated Ca2+ efflux from the root mature zone cells, ranging from 9.43 to 350.35 pmol·cm-2·s-1. Whilst, EGTA pretreatment inhibited DIDS-induced the increase of Ca2+ fluorescence intensity in tea lateral roots, and also significantly impaired DIDS-decreased F accumulation in tea plants.[Conclusions] Taken together, the endogenous Ca2+ in the mature zone of tea root might participate in the F accumulation in tea plants inhibited by the pretreatment of DIDS.

参考文献/References:

[1] Ruan J Y,Wong M H. Accumulation of fluoride and aluminum related to different varieties of tea plants[J]. Environmental Geochemistry and Health,2001,23:53-63.
[2] Fung K F,Zhang Z Q,Wong J W C,et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion[J]. Environmental Pollution,1999,104:197-205.
[3] Cao J,Zhao Y,Liu J. Brick tea consumption as the cause of dental fluorosis among children from Mongol,Kazak and Yugu populations in China[J]. Food and Chemical Toxicology,1997,35:827-833.
[4] Gao H J,Zhang Z Z,Wan X C. Influences of charcoal and bamboo charcoal amendment on soil-fluoride fractions and bioaccumulation of fluoride in tea plants[J]. Environment Geochemistry Health,2012,34:551-562.
[5] Kidd J F,Thorn P. Intracellular Ca2+ and Cl- channel activation in secretory cells[J]. Annual Review of Physiology,2000,62:493-513.
[6] Zhang X C,Gao H J,Zhang Z Z,et al. Influences of different ion channel inhibitors on the absorption of fluoride in tea plants[J]. Plant Growth and Regulation,2013,69:99-106.
[7] Roberts S K. Plasma membrane anion channels in higher plants and their putative functions in roots[J]. New Phytologist,2006,169:647-666.
[8] Gilliham M,Tester M. The regulation of anion loading to the maize root xylem[J]. Plant Physiology,2005,137:819-828.
[9] Krol E,Trebacz K. Ways of ion channel gating in plant cells[J]. Annals of Botany,2000,86:449-469.
[10] Allen G J,Sanders D. Vacuolar ion channels of higher plants[J]. Advances in Botanical Research Incorportation Advances in Plant Pathology,1997,25:217-252.
[11] Ward J M,Pei Z M,Schroeder J I. Roles of ion channels in initiation of signal transduction in higher plants[J]. The Plant Cell,1995,7:833-844.
[12] Chen T,Wu X Q,Chen Y M,et al. Combined proteomic and cytological analysis of Ca2+-Calmodulin regulation in Picea meyeri pollen tube growth[J]. Plant Physiology,2009,149:1111-1126.
[13] Liao W B,Zhang M L,Huang G B,et al. Ca2+ and CaM are involved in NO- and H2O2-induced adventitious root development in marigold[J]. Journal of Plant Growth Regulation,2012,31:253-264.
[14] Kudla J,Batistic O,Hashimoto K. Calcium signals:the lead currency of plant information processing[J]. The Plant Cell,2010,22:541-563.
[15] Pei Z M,Ward J M,Schroeder J I. Magnesium sensitizes slow vacuolar channels to physiological cytosolic calcium and inhibits fast vacuolar channels in fava bean guard cell vacuoles[J]. Plant Physiology,1999,121:977-986.
[16] Ward J M,Mäser P,Schroeder J I. Plant ion channels:gene families,physiology,and functional genomics analyses[J]. Annual Review of Plant Biology,2009,71:59-82.
[17] 张显晨,郜红建,张正竹,等. 铝对氟在茶树体内吸收与分配的影响[J]. 食品科学,2013,34(5):147-150. Zhang X C,Gao H J,Zhang Z Z,et al. Influnce on aluminum on absorption and distribution of the fluoride in tea plants(Camellia sinensis L.)[J]. Food Science,2013,34(5):147-150(in Chinese with English abstract).
[18] Zhang W H,Rengel Z,Kuo J. Determination of intracellular Ca2+ in cells of intact wheat roots:loading of acetoxymethyl ester of Fluo-3 under low temperature[J]. The Plant Journal,1998,15(1):147-151.
[19] Zhang X C,Gao H J,Wu H H,et al. Ca2+ and CaM are involved in Al3+ pretreatment-promoted fluoride accumulation in tea plants(Camellia sinesis L.)[J]. Plant Physiology and Biochemistry,2015,96:288-295.
[20] Shabala S N,Newman I A,Morris J. Oscillations in H+ and Ca2+ ion fluxes around the elongation region of corn roots and effects of external pH[J]. Plant Physiology,1997,113:111-118.
[21] Zhang L,Li Q,Ma L F,et al. Characterization of fluoride uptake by roots of tea plants(Camellia sinensis(L.)O. Kuntze)[J]. Plant and Soil,2012,366:659-669.
[22] Berridge M J,Lipp P,Bootman M D,et al. The versatility and universality of calcium signalling[J]. Nature Reviews Molecular Cell Biology,2000,1:11-21.
[23] Kim Y H,Wang M Q,Bai Y,et al. Bcl-2 suppresses activation of VPEs by inhibiting cytosolic Ca2+ level with elevated K+ efflux in NaCl-induced PCD in rice[J]. Plant Physiology and Biochemistry,2014,80:168-175.
[24] Sun J,Zhang X,Deng S R,et al. Extracellular ATP signaling is mediated by H2O2 and cytosolic Ca2+ in the salt response of Populus euphratica cells[J]. PLoS ONE,2012,7(12):e53136.
[25] Fan J L,Wei X Z,Wan L C,et al. Disarrangement of actin filaments and Ca2+ gradient by CdCl2 alters cell wall construction in Arabidopsis thaliana root hairs by inhibiting vesicular trafficking[J]. Journal of Plant Physiology,2011,168:1157-1167.
[26] Laanemets K,Wang Y F,Lindgren O,et al. Mutations in the SLAC1 anion channel slow stomatal opening and severely reduce K+ uptake channel activity via enhanced cytosolic[Ca2+]and increased Ca2+ sensitivity of K+ uptake channels[J]. New Phytologist,2013,197(1):88-98.
[27] Buchanan B B,Gruissem W,Jones R L. Biochemistry & Molecular Biology of Plants[M]. Hoboken:American Society of Plant Physiologists Press,2000:148-149.
[28] Allen G J,Sanders D. Control of ionic currents in guard cell vacuoles by cytosolic and luminal calcium[J]. The Plant Journal,1996,10(6):1055-1069.
[29] Kollist H,Jossier M,Laanemets K,et al. Anion channels in plant cells[J]. The FEBS Journal,2011,278:4277-4292.
[30] Chen Z H,Hills A,Lim C K,et al. Dynamic regulation of guard cell anion channels by cytosolic free Ca2+ concentration and protein phosphorylation[J]. The Plant Journal,2010,61:816-825.
[31] Wang Y Q,Wang X L,Shan Y H,et al. Membrane-potential alteration during K+ uptake of different salt-tolerant wheat varieties[J]. Agricultural Sciences in China,2010,9(7):974-979.
[32] Yang T B,Poovaiah B W. Calcium/calmodulin-mediated signal network in plants[J]. Trends in Plant Science,2003,8(10):505-512.

备注/Memo

备注/Memo:
收稿日期:2015-10-21。
基金项目:国家自然科学基金项目(31272254,41071158)
作者简介:张显晨,博士后,南京农业大学农业与资源利用流动站,E-mail:zhangxianchen360@163.com。
通信作者:郜红建,教授,博导,研究方向为植物营养,E-mail:hjgao@ahau.edu.cn。
更新日期/Last Update: 1900-01-01