HOU Liyuan,JIANG Jingwei,JIANG Jiandong,et al.Isolation of Pseudoxanthomonas sp.J1 and bioinformatics analysis of lignocellulose-degrading genes[J].Journal of Nanjing Agricultural University,2016,39(4):573-581.[doi:10.7685/jnau.201512026]





Isolation of Pseudoxanthomonas sp.J1 and bioinformatics analysis of lignocellulose-degrading genes
侯丽媛 江经纬 蒋建东 许志辉 梁志清
南京农业大学生物信息学中心/生命科学学院, 江苏 南京210095
HOU Liyuan JIANG Jingwei JIANG Jiandong XU Zhihui LIANG Zhiqing
Bioinformatics Center/College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
lignocellulosePseudoxanthomonas sp.bacterial genomebioinformaticsbioethanol
[目的] 本研究旨在发掘木质纤维素降解菌种资源,并寻找木质纤维素降解关键酶基因和代谢通路。[方法] 以纤维素为唯一碳源,从土壤、腐叶混合物中分离出27株具有纤维素降解能力的细菌。通过测定纤维素酶活力,将降解效果最优菌株进行全基因组测序。通过与同属细菌的全基因组序列的比对构建贝叶斯树。[结果] 菌株J1内切纤维素酶、滤纸酶和β-葡萄糖苷酶活力峰值分别为0.39、0.18和0.11 IU·mL-1,并将菌株J1鉴定为假黄单胞菌(Pseudoxanthomonas sp.)。Clusters of Orthologous Groups (COG)和Carbohydrate-Active Enzyme Database (CAZy)等基因数据库注释结果表明:菌株J1具有木质纤维素降解酶基因。代谢通路预测表明:该菌株具有利用纤维素生成乙醇的代谢通路。[结论] 本研究分离筛选到的假黄单胞菌株J1可以作为生物乙醇发酵的候选菌株,同时测序获得的全基因组数据将为假黄单胞菌属降解木质纤维素的途径提供依据。
[Objectives] In order to isolate lignocellulosic bacteria and find important enzyme and pathway of lignocellulose degradation from its genome,the present study was designed to isolate high-performance lignocellulosic bacteria from the soil.[Methods] Cellulose was used as the sole carbon source to isolate strains with high cellulose enzyme activities from rotten leaves. The cellulose-degrading activities were measured,and the complete genome were sequenced on the MiSeq platform. Taxonomy of strain J1 was investigated through the comparisons of its genomic sequencing with five available genomes from other bacteria. Whole genome of strain J1 was annotated by blasting on COG databases,CAZy databases and so on.[Results] Over 27 cellulose-degrading bacteria were isolated and strain J1 was finally selected. The peak value of endocellullase,filter paper enzyme activity and β-glucosidase were 0.39,0.18 and 0.11 IU·mL-1,respectively. Strain J1 was primarily identified as Pseudoxanthomonas sp. The predicted lignocellulose-degrading genes on the genome of strain J1 include β-glucosidase gene and endo-β-1,4-glucanase gene and so on. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed strain J1 could convert cellulose to ethanol.[Conclusions] Strain J1 has high lignocellulose-degrading activity and may utilize cellulose to produce ethanol. Strain J1 is a candidate for ethanol fermentative production and its genomic information provided insights into lignocellulose-degrading pathways in the environment.


[1] Sanchez C. Lignocellulosic residues:biodegradation and bioconversion by fungi[J]. Biotechnol Adv,2009,27(2):185-194.
[2] Rubin E M. Genomics of cellulosic biofuels[J]. Nature,2008,454(7206):841-845.
[3] Lynd L R,Weimer P J,van Zyl W H,et al. Microbial cellulose utilization:fundamentals and biotechnology[J]. Microbiol Mol Biol Rev,2002,66(3):506-577.
[4] 刘洁丽,王靖. 生物产纤维素酶研究进展[J]. 化学与生物工程,2008,25(12):9-12. Liu J L,Wang J. Research progress in cellulase excreted from biology[J]. Chemistry and Bioengineering,2008,25(12):9-12(in Chinese with English abstract).
[5] Meng X Z,Ragauskas A J. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates[J]. Current Opinion in Biotechnology,2014,27:150-158.
[6] Finkmann W,Altendorf K,Stackebrandt E,et al. Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp.nov.,Luteimonas mephitis gen.nov.,sp.nov.and Pseudoxanthomonas broegbernensis gen.nov.,sp.nov.[J]. International Journal of Systematic and Evolutionary Microbiology,2000,50(1):273-282.
[7] Lee S H,Jin H M,Lee H J,et al. Complete genome sequence of the BTEX-degrading bacterium Pseudoxanthomonas spadix BD-a59[J]. Journal of Bacteriology,2012,194(2):544.
[8] Weon H Y,Kim B Y,Kim J S,et al. Pseudoxanthomonas suwonensis sp nov.,isolated from cotton waste composts[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(3):659-662.
[9] Kumar M,Revathi K,Khanna S. Biodegradation of cellulosic and lignocellulosic waste by Pseudoxanthomonas sp.R-28[J]. Carbohyd Polym,2015,134:761-766.
[10] Du R,Yan J B,Li S Z,et al. Cellulosic ethanol production by natural bacterial consortia is enhanced by Pseudoxanthomonas taiwanensis[J]. Biotechnology for Biofuels,2015,8(1):10-19.
[11] Hou L Y,Jiang J J,Xu Z H,et al. Complete genome sequence of Pseudoxanthomonas suwonensis strain J1,a cellulose-degrading bacterium isolated from leaf-and wood-enriched soil[J]. Genome Announcements,2015,3(3):14-15.
[12] Gunathilake K M D,Ratnayake R R,Kulasooriya S A,et al. Evaluation of cellulose degrading efficiency of some fungi and bacteria and their biofilms[J]. Journal of the National Science Foundation of Sri Lanka,2013,41(2):155-163.
[13] Brockman E R. Fruiting myxobacteria from the South Carolina coast[J]. J Bacteriol,1967,94(4):1253-1254.
[14] Irfan M,Safdar A,Syed Q,et al. Isolation and screening of cellulolytic bacteria from soil and optimization of cellulase production and activity[J]. Turkish Journal of Biochemistry,2012,37(3):287-293.
[15] Kaur M,Arora S. Isolation and screening of cellulose degrading bacteria in kitchen waste and detecting their degrading potential[J]. Journal of Mechanical and Civil Engineering,2012,1(2):33-35.
[16] Mielenz J R. Biofuels:Methods and Protocols[M]. New York:Humana Press Inc,2009.
[17] Ghose T K. Measurement of cellulase activities[J]. Pure Appl Chem,1987,59(2):257-268.
[18] Lee K W,Han N S,Kim J H. Purification and characterization of beta-glucosidase from Weissella cibaria 37[J]. J Microbiol Biotechnol,2012,22(12):1705-1713.
[19] 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 23881-2009饲用纤维素酶活性的测定:滤纸法[S]. 北京:中国标准出版社,2009. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Standardization Administration of the People’s Republic of China. GB/T 23881-2009 Detemination of feed cellulase activity:filter paper assay method[S]. Beijing:China Standards Press,2009(in Chinese).
[20] Hall B G. Comparison of the accuracies of several phylogenetic methods using protein and DNA sequences[J]. Mol Biol Evol,2005,22(3):792-802.
[21] Galperin M Y,Makarova K S,Wolf Y I,et al. Expanded microbial genome coverage and improved protein family annotation in the COG database[J]. Nucleic Acids Res,2015,43(Data base issue):D261-D269.
[22] Lombard V,Ramulu H G,Drula E,et al. The carbohydrate-active enzymes database(CAZy)in 2013[J]. Nucleic Acids Res,2014,42(Data base issue):D490-D495.
[23] Kanehisa M,Goto S,Sato Y,et al. Data,information,knowledge and principle:back to metabolism in KEGG[J]. Nucleic Acids Res,2014,42(Data base issue):D199-D205.
[24] Teeri T T,Koivula A,Linder M,et al. Trichoderma reesei cellobiohydrolases:why so efficient on crystalline cellulose?[J]. Biochemical Society Transactions,1998,26(2):173-178.
[25] Adams A S,Jordan M S,Adams S M,et al. Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio[J]. International Society for Microbial Ecology,2011,5(8):1323-1331.
[26] 张辉. 木质素降解酶系研究新进展[J]. 天津农业科学,2006,12(3):8-12. Zhang H. New advance of study on ligninolytic enzymes[J]. Tianjin Agricultural Sciences,2006,12(3):8-12(in Chinese with English abstract).
[27] Rastogi G,Bhalla A,Adhikari A,et al. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains[J]. Bioresource Technology,2010,101(22):8798-8806.
[28] Gupta P,Samant K,Sahu A. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential[J]. International Journal of Microbiology,2012,2012:578925-578929.
[29] Sadhu S,Maiti T K. Cellulase production by bacteria:a review[J]. British Microbiology Research Journal,2013,3(3):235-258.
[30] Lamed R,Setter E,Bayer E A. Characterization of a cellulose-binding,cellulase-containing complex in Clostridium thermocellum[J]. Journal of Bacteriology,1983,156(2):828-836.
[31] Wilson D B. Three microbial strategies for plant cell wall degradation[J]. Ann N Y Acad Sci,2008,1125:289-297.
[32] Wilson D B. The first evidence that a single cellulase can be essential for cellulose degradation in a cellulolytic microorganism[J]. Mol Microbiol,2009,74(6):1287-1288.
[33] Suen G,Weimer P J,Stevenson D M,et al. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist[J]. PLoS ONE,2011,6(4):e18814.
[34] Xie G,Bruce D,Challacombe J,et al. Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii[J]. Applied and Environmental Microbiology,2007,73(11):3536-3546.
[35] Wilson D B. Microbial diversity of cellulose hydrolysis[J]. Current Opinion in Microbiology,2011,14(3):259-263.
[36] Blumer-Schuette S E,Lewis D L,Kelly R M. Phylogenetic,microbiological and glycoside hydrolase diversities within the extremely thermophilic,plant biomass-degrading genus Caldicellulosiruptor[J]. Applied and Environmental Microbiology,2010,76(24):8084-8092.


 SUN Jiang-hui,ZHANG Nan,SHEN Qi-rong,et al.Study on biodegrated ability of edible fungi to rice straw[J].Journal of Nanjing Agricultural University,2012,35(4):49.[doi:10.7685/j.issn.1000-2030.2012.06.009]
[2]王炫清,苗嘉曦,陈兴,等.高效木质纤维素分解菌Aspergillusy fumigatus Z5原位分解小麦秸秆的研究[J].南京农业大学学报,2017,(4):671.[doi:10.7685/jnau.201610010]
 WANG Xuanqing,MIAO Jiaxi,CHEN Xing,et al.Insight into the degradation of wheat straw by an efficient lignocellulosic-decomposing fungus Aspergillus fumigatus Z5[J].Journal of Nanjing Agricultural University,2017,(4):671.[doi:10.7685/jnau.201610010]


更新日期/Last Update: 1900-01-01