[1]刘海艳,杨丽洁,丁艳锋,等.NO对水稻孕穗期干旱胁迫下叶片光合及产量的影响[J].南京农业大学学报,2017,40(2):195-202.[doi:10.7685/jnau.201605012]
 LIU Haiyan,YANG Lijie,DING Yanfeng,et al.Effects of nitric oxide on photosynthesis and yield of rice under drought stress at booting stage[J].Journal of Nanjing Agricultural University,2017,40(2):195-202.[doi:10.7685/jnau.201605012]
点击复制

NO对水稻孕穗期干旱胁迫下叶片光合及产量的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年2期
页码:
195-202
栏目:
OA栏目
出版日期:
2017-03-01

文章信息/Info

Title:
Effects of nitric oxide on photosynthesis and yield of rice under drought stress at booting stage
作者:
刘海艳1 杨丽洁1 丁艳锋1 李刚华1 王绍华1 刘正辉1 唐设1 刘仁梅2 蒋卫红1
1. 南京农业大学江苏省现代作物生产协同创新中心/农业部南方作物生理生态重点开放实验室, 江苏 南京 210095;
2. 金湖县农业局, 江苏 淮安 223000
Author(s):
LIU Haiyan1 YANG Lijie1 DING Yanfeng1 LI Ganghua1 WANG Shaohua1 LIU Zhenghui1 TANG She1 LIU Renmei2 JIANG Weihong1
1. Jiangsu Collaborative Innovation Center for Modern Crop Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
2. Jinhu County Agriculture Bureau, Huai’an 223000, China
关键词:
水稻干旱胁迫NO光合作用叶绿素荧光
Keywords:
ricedrought stressNOphotosynthesischlorophyll fluorescence
分类号:
S511;S311
DOI:
10.7685/jnau.201605012
摘要:
[目的]本文旨在探讨NO对水稻孕穗期干旱胁迫下叶片光合机构损伤的缓解作用。[方法]以‘早玉香粳’为试验材料,采用盆栽,在孕穗期设4个处理:正常水分管理+喷施清水(用WT表示);正常水分管理+喷施100 μmol·L-1硝普钠(SNP,sodium nitroprusside)(W100);干旱胁迫+喷施清水(DS);干旱胁迫+喷施100 μmol·L-1 SNP(D100)。在喷施SNP后1、4、7、10 d取样,测定水稻光合作用,叶绿素荧光动力学参数,抗氧化酶[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)]活性,丙二醛(MDA)含量,超氧阴离子(O2·)产生速率和过氧化氢(H2O2)含量以及产量等指标。[结果]与正常水分管理相比,干旱胁迫下水稻SOD、CAT、POD活性显著升高,一定程度上可以抑制MDA积累;H2O2含量、O2·产生速率显著增加并随着干旱胁迫加剧持续增加;净光合速率(Pn)、气孔导度(Gs)和蒸腾速率(Tr)随着干旱胁迫加剧,呈下降趋势;胞间CO2浓度(Ci)呈先下降后上升的趋势;叶绿素荧光参数最小荧光(Fo)、非荧光淬灭(NPQ)显著上升,并随着干旱的持续加剧上升;最大光化学效率(Fv/Fm)、光化学淬灭(qP)显著下降,并随着干旱的持续加剧下降,最终导致水稻产量显著下降。叶面喷施NO,短期内降低了水稻Pn,但提高了水稻干旱胁迫时叶片抗氧化酶活性,其中H2O2、MDA含量以及O2·产生速率较干旱喷水处理降低了14.4%、18.3%、14.38%;同时诱导气孔关闭,继而降低蒸腾速率,减少水分过度消耗;缓解了Fo的增加和Fv/FmqP的下降,并进一步增加了NPQ,加快复水后光合机构功能修复,最终产量较干旱胁迫下提高了21.0%。[结论]NO对水稻孕穗期干旱胁迫下光合机构具有明显的保护作用,并促进复水后光合作用的恢复,减轻了干旱造成的产量损失。
Abstract:
[Objectives] The paper aims to analyze the alleviated effects of exogenous nitric oxide on the photosynthesis of rice under drought stress at booting stage. [Methods] The rice variety ‘Zaoyuxiangjing’ as experimental material was planted in pot,setting up four processings at booting stage:normal moisture management+spraying water(indicated by WT);normal moisture management+100 μmol·L-1 SNP(sodium nitroprusside)(W100);drought stress+spraying water(DS);drought stress+spraying 100 μmol·L-1 SNP(D100). The leaves of rice were sampled on the 1st,4th,7th,10th day after spraying SNP,and analyzed on the effect on net photosynthetic rate(Pn),stomatal conductance(Gs),transpiration rate(Tr),chlorophyll fluorescence parameters,the activity of antioxidant enzyme(SOD,CAT,POD),membrane lipid peroxidation(MDA) content,hydrogen peroxide(H2O2) content,superoxide anion(O2·)-generating rate and yield of per pot. [Results] Under drought stress,rice maintained a higher activity of SOD,POD and CAT,leading to a decrease in MDA content to an extent. Hydrogen peroxide(H2O2) content and superoxide anion(O2·)-generating rate increased when drought stress became serious. The Pn,Gsand Tr decreased consistently. And Ci decreased at first,then increased. The minimal fluorescence level(Fo) and non-photochemical quenching(NPQ)increased significantly. The maximum photochemical efficiency of PSⅡ(Fv/Fm) and photochemical fluorescence quenching efficiency declined significantly,which led to the decline of yield. When SNP was applied,Pn was reduced on the 1st day after treatments. The activity of SOD,POD,CAT further improved,which resulted in a decline in the content of hydrogen peroxide(H2O2),MDA and the generating rate of superoxide anion(O2·),by 14.4%,18.3%,14.38% respectively. Meanwhile,exogenous NO induced stomatal closure under drought stress and reduced transpiration rate to reduce excessive water consumption. It also alleviated the increase of Foand the reduction of Fv/Fm,qP,and further improved the chlorophyll fluorescence parameters NPQ,and accelerated a remarkable recovery in the photosynthesis functional after rehydration. The end,the grain yield of per pot significantly improved with 21.0% increasement. [Conclusions] These results suggested that NO improved the photosynthetic apparatus of rice under drought stress at booting stage,and made a remarkable recovery in photosynthesis after rehydration,which are beneficial to increasing yield.

参考文献/References:

[1] 王春乙,娄秀荣,王建林. 中国农业气象灾害对作物产量的影响[J]. 自然灾害学报,2007,16(5):37-43. Wang C Y,Lou X R,Wang J L. Influence of agricultural meteorological disasters on output of crop in China[J]. Journal of Natural Disasters,2007,16(5):37-43(in Chinese with English abstract).
[2] 李成业,熊昌明,魏仙君. 中国水稻抗旱研究进展[J]. 作物研究,2006(5):426-429,434. Li C Y,Xiong C M,Wei X J. Progress of China rice drought research[J]. Crop Research,2006(5):426-429,434(in Chinese).
[3] 张玉屏,朱德峰,林贤青,等. 不同灌溉方式对水稻需水量和生长的影响[J]. 灌溉排水学报,2007,26(2):83-85. Zhang Y P,Zhu D F,Lin X Q,et al. Effects of different irrigation methods on water demand and growth of rice[J]. Journal of Irrigation and Drainage,2007,26(2):83-85(in Chinese).
[4] Hura T,Hura K,Grzesiak M,et al. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants[J]. Acta Physiologiae Plantarum,2007,29(2):103-113.
[5] Carmo-Silva A E,Keys A J,Andralojc P J,et al. Rubisco activities,properties,and regulation in three different C4 grasses under drought[J]. Journal of Experimental Botany,2010,61(9):2355-2366.
[6] Hura T,Hura K,Grzesiak M,et al. Effect of long-term drought stress on leaf gas exchange and fluorescence parameters in C3 and C4 plants[J]. Acta Physiologiae Plantarum,2007,29(2):103-113.
[7] Loggini B,Scartazza A,Brugnoli E,et al. Antioxidative defense system,pigment composition,and photosynthetic efficiency in two wheat cultivars subjected to drought[J]. Plant Physiology,1999,119(3):1091-1099.
[8] Moldovan L,Moldovan N I. Oxygen free radicals and redox biology of organelles[J]. Histochemistry and Cell Biology,2004,122(4):395-412.
[9] Monneveux P,Pastenes C,Reynolds M P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes[J]. Journal of Plant Physiology,2003,160(6):657-666.
[10] 郭贵华,刘海艳,李刚华,等. ABA缓解水稻孕穗期干旱胁迫生理特性的分析[J]. 中国农业科学,2014,47(22):4380-4391. Guo G H,Liu H Y,Li G H,et al. The analysis of physiological characteristics about ABA alleviating rice booting stage drought stress[J]. Scientia Agricultura Sinica,2014,47(22):4380-4391.
[11] Chen W,Yao X,Cai K,et al. Silicon alleviates drought stress of rice plants by improving plant water status,photosynthesis and mineral nutrient absorption[J]. Biological Trace Element Research,2011,142(1):67-76.
[12] Farooq M,Wahid A,Lee D J. Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status,photosynthesis and membrane properties[J]. Acta Physiologiae Plantarum,2009,31(5):937-945.
[13] Wink D A,Mitchell J B. Chemical biology of nitric oxide:insights into regulatory,cytotoxic,and cytoprotective mechanisms of nitric oxide[J]. Free Radical Biology and Medicine,1998,25(4/5):434-456.
[14] Arasimowicz-Jelonek M,Floryszak-Wieczorek J,Kubi As’ J. Interaction between polyamine and nitric oxide signaling in adaptive responses to drought in cucumber[J]. Journal of Plant Growth Regulation,2009,28(2):177-186.
[15] Leshem Y Y,Haramaty E. The characterization and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn.Foliage[J]. Journal of Plant Physiology,1996,148(3):258-263.
[16] Gould K S,Lamotte O,Klinguer A,et al. Nitric oxide production in tobacco leaf cells:a generalized stress response?[J]. Plant,Cell and Environment,2003,26(11):1851-1862.
[17] Kolbert Z,Bartha B,Erdei L. Generation of nitric oxide in roots of Pisum sativum,Triticuma estivum and Petroselinum crispum plants under osmotic and drought stress[J]. Acta Biol Szegediensis,2005,49:13-16.
[18] Tan J,Zhao H,Hong J,et al. Effects of exogenous nitric oxide on photosynthesis,antioxidant capacity and proline accumulation in wheat seedlings subjected to osmotic stress[J]. World J Agric Sci,2008,4(3):307-313.
[19] Wang Y,Suo B,Zhao T,et al. Effect of nitric oxide treatment on antioxidant responses and psbA gene expression in two wheat cultivars during grain filling stage under drought stress and rewatering[J]. Acta Physiologiae Plantarum,2011,33(5):1923-1932.
[20] 李合生.植物生理生化原理与技术[M]. 北京:高等教育出版社,2000:184-185. Li H S. Plant Physiology and Biochemistry Test Principles and Techniques[M]. Beijing:Higher Education Press,2000:184-185(in Chinese).
[21] 李长宁,Srivastava M K,农倩,等. 水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J]. 作物学报,2010,36(5):863-870. Li C N,Srivastava M K,Nong Q,et al. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress[J]. Acta Agronomica Sinica,2010,36(5):863-870(in Chinese with English abstract).
[22] 姚满生,杨小环,郭平毅. 脱落酸与水分胁迫下棉花幼苗水分关系及保护酶活性的影响[J]. 棉花学报,2005,17(3):141-145. Yao M S,Yang X H,Guo P Y. Effects of abscisic acid on water relationship and defensive enzymes activities in cotton seedling under water stress[J]. Cotton Science,2005,17(3):141-145(in Chinese with English abstract).
[23] 陈银萍,蘧苗苗,苏向南,等. 外源一氧化氮对镉胁迫下紫花苜蓿幼苗活性氧代谢和镉积累的影响[J]. 农业环境科学学报,2015,34(12):2261-2271. Chen Y P,Qu M M,Su X N,et al. Effect of exogenous nitric oxide on active oxygen metabolism and cadmium accumulation in alfalfa seedlings under cadmium stress[J]. Journal of Agro-Environment Science,2015,34(12):2261-2271(in Chinese with English abstract).
[24] Flexas J,Bota J,Loreto F,et al. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants[J]. Plant Biology,2004,6(3):269-279.
[25] Lawlor D W,Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant,Cell and Environment,2002,25(2):275-294.
[26] 徐俊增,彭世彰,魏征,等. 节水灌溉水稻叶片胞间CO2浓度及气孔与非气孔限制[J]. 农业工程学报,2010,26(7):76-80. Xu J Z,Peng S Z,Wei Z,et al. Intercellular CO2 concentration and stomatal or non-stomatal limitation of rice under water saving irrigation[J]. Transactions of the CSAE,2010,26(7):76-80(in Chinese with English abstract).
[27] Schnabel G,Strittmatter G,Noga G. Changes in photosynthetic electron transport in potato cultivars with different field resistance after infection with Phytophthora infestans[J]. Journal of Phytopathology,1998,146(5):205-210.
[28] Barto?ková H,Komenda J,Nau? J. Functional changes of photosystemⅡ in the moss Rhizomnium punctatum(Hedw.)induced by different rates of dark desiccation[J]. Journal of Plant Physiology,1999,154(5):597-604.
[29] Pastenes C,Horton P. Resistance of photosynthesis to high temperature in two bean varieties(Phaseolus vulgaris L.)[J]. Photosynthesis Research,1999,62(2):197-203.
[30] Farooq M,Basra S M A,Wahid A,et al. Exogenously applied nitric oxide enhances the drought tolerance in fine grain aromatic rice(Oryza sativa L.)[J]. Journal of Agronomy and Crop Science,2009,195(4):254-261.
[31] Song L,Yue L,Zhao H,et al. Protection effect of nitric oxide on photosynthesis in rice under heat stress[J]. Acta Physiologiae Plantarum,2013,35(12):3323-3333.
[32] Demmig-Adams B,Adams W W. The role of xanthophyll cycle carotenoids in the protection of photosynthesis[J]. Trends in Plant Science,1996,1(1):21-26.
[33] García-Plazaola J I,Hernández A,Olano J M,et al. The operation of the lutein epoxide cycle correlates with energy dissipation[J]. Functional Plant Biology,2003,30(3):319-324.
[34] Yang W,Sun Y,Chen S,et al. The effect of exogenously applied nitric oxide on photosynthesis and antioxidant activity in heat stressed chrysanthemum[J]. Biologia Plantarum,2011,55(4):737-740.
[35] Wodala B,Örd g A,Horváth F. The cost and risk of using sodium nitroprusside as a NO donor in chlorophyll fluorescence experiments[J]. Journal of Plant Physiology,2010,167(13):1109-1111.
[36] Noctor G,Veljovic-Jovanovic S,Driscoll S,et al. Drought and oxidative load in the leaves of C3 plants:a predominant role for photorespiration?[J]. Annals of Botany,2002,89(7):841-850.
[37] Cruz de Carvalho M H. Drought stress and reactive oxygen species:production,scavenging and signaling[J]. Plant Signaling and Behavior,2008,3(3):156-165.
[38] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist,1993(1):27-58.
[39] Kirschbaum M U F. Water stress in Eucalyptus pauciflora:comparison of effects on stomatal conductance with effects on the mesophyll capacity for photosynthesis,and investigation of a possible involvement of photoinhibition[J]. Planta,1987,171(4):466-473.
[40] Kirschbaum M U F. Recovery of photosynthesis from water stress in Eucalyptus pauciflora:a process in two stages[J]. Plant,Cell and Environment,1988,11(8):685-694.
[41] Liu W J,Yuan S,Zhang N H,et al. Effect of water stress on photosystem 2 in two wheat cultivars[J]. Biologia Plantarum,2006,50(4):597-602.
[42] Jedmowski C,Ashoub A,Momtaz O,et al. Impact of drought,heat,and their combination on chlorophyll fluorescence and yield of wild barley(Hordeum spontaneum)[J]. Journal of Botany,2015,2015(6):1-9.
[43] Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.

相似文献/References:

[1]张辰明,徐烨红,赵海娟,等.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,2011,34(3):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
 ZHANG Chen-ming,XU Ye-hong,ZHAO Hai-juan,et al.Effects of different nitrogen forms on nitrogen uptake and root growth of rice at the seedling stage[J].Journal of Nanjing Agricultural University,2011,34(2):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
[2]郝文雅,沈其荣,冉炜,等.西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J].南京农业大学学报,2011,34(3):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
 HAO Wen-ya,SHEN Qi-rong,RAN Wei,et al.The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f.sp. niveum[J].Journal of Nanjing Agricultural University,2011,34(2):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
[3]徐小飒,刘喜,赵志刚,等.培矮64S/93-11重组自交系分子图谱构建及千粒重QTL检测[J].南京农业大学学报,2011,34(1):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
 XU Xiao-sa,LIU Xi,ZHAO Zhi-gang,et al.Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S/93-11 and detection of QTL for 1000-grain weight[J].Journal of Nanjing Agricultural University,2011,34(2):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
[4]魏广彬,徐海港,丁艳峰,等.水稻设计栽培系统的研制与实现[J].南京农业大学学报,2011,34(1):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
 WEI Guang-bin,XU Hai-gang,DING Yan-feng,et al.Development and realization of the rice design cultivation system[J].Journal of Nanjing Agricultural University,2011,34(2):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
[5]李刚华,王惠芝,王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J].南京农业大学学报,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
 LI Gang-hua,WANG Hui-zhi,WANG Shao-hua,et al.Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
[6]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
 WANG Bi-qian,FAN Xiao-rong,XU Guo-hua,et al.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
[7]赵成国,徐海港,李刚华,等.超高产单季粳稻抽穗期群体构成研究[J].南京农业大学学报,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
 ZHAO Cheng-guo,XU Hai-gang,LI Gang-hua,et al.Studies on population composition of super-high-yielding single-cropping japonica rice in heading stage[J].Journal of Nanjing Agricultural University,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
[8]陈志德,仲维功,王军,等.水稻苗期Cd2+胁迫的QTL定位研究[J].南京农业大学学报,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
 CHEN Zhi-de,ZHONG Wei-gong,WANG Jun,et al.Mapping of QTL of tolerance to Cd^{2+} stress at seedling stage in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
[9]叶利庭,樊剑波,徐晔红,等.不同氮效率水稻的生长特性[J].南京农业大学学报,2010,33(3):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
 YE Li-ting,FAN Jian-bo,XU Ye-hong,et al.Characteristics of growth in rice genotypes with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
[10]晋玉宽,杨世湖,余丽,等.不同启动子驱动下Pib基因的表达及与稻瘟病抗性的关系[J].南京农业大学学报,2010,33(4):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]
 JIN Yu-kuan,YANG Shi-hu,YU Li,et al.Expression and resistance analysis of the Pib gene in transgenic rice under different promoters[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]

备注/Memo

备注/Memo:
收稿日期:2016-05-10。
基金项目:中央高校基本科研业务费重大专项(KYTZ201402);国家科技支撑计划项目(2012BAD20B05,2015BAD01B03)
作者简介:刘海艳,硕士研究生。
通信作者:李刚华,教授,主要从事水稻生理生态研究,E-mail:lgh@njau.edu.cn。
更新日期/Last Update: 1900-01-01