[1]黄强,白凯文,徐稳,等.日粮添加亮氨酸对宫内发育迟缓断奶仔猪小肠葡萄糖吸收和能量代谢的影响[J].南京农业大学学报,2017,40(2):339-345.[doi:10.7685/jnau.201602030]
 HUANG Qiang,BAI Kaiwen,XU Wen,et al.Effects of leucine supplementation on the small intestinal glucose absolution and energy metabolism in weanling piglets with intrauterine growth retardation[J].Journal of Nanjing Agricultural University,2017,40(2):339-345.[doi:10.7685/jnau.201602030]
点击复制

日粮添加亮氨酸对宫内发育迟缓断奶仔猪小肠葡萄糖吸收和能量代谢的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年2期
页码:
339-345
栏目:
OA栏目
出版日期:
2017-03-01

文章信息/Info

Title:
Effects of leucine supplementation on the small intestinal glucose absolution and energy metabolism in weanling piglets with intrauterine growth retardation
作者:
黄强 白凯文 徐稳 何进田 张莉莉 周乐 王恬
南京农业大学动物科技学院, 江苏 南京 210095
Author(s):
HUANG Qiang BAI Kaiwen XU Wen HE Jintian ZHANG Lili ZHOU Le WANG Tian
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
关键词:
亮氨酸宫内发育迟缓葡萄糖吸收能量代谢仔猪
Keywords:
leucineintrauterine growth retardationglucose absolutionenergy metabolismpiglets
分类号:
S828.8
DOI:
10.7685/jnau.201602030
摘要:
[目的]本文旨在研究亮氨酸对宫内发育迟缓(IUGR)断奶仔猪小肠葡萄糖吸收和能量代谢的影响。[方法]从正常分娩的16头母猪中选择正常初生体质量(NBW)和IUGR新生仔猪各16头,于14日龄断奶,分别饲喂基础日粮(含1.45%亮氨酸)或亮氨酸日粮(含1.80%亮氨酸)并随机分为4组,即NC(NBW+基础日粮)、NL(NBW+亮氨酸日粮)、IC(IUGR+基础日粮)、IL(IUGR+亮氨酸日粮),每组8头,公母各半,35日龄屠宰取样,对空肠酶活性和相关酶mRNA表达量进行测定。[结果]IUGR仔猪空肠AKP、Na+/K+-ATP酶、PK和线粒体MDH活性及ATP含量均显著下降(P<0.05),SGLT1PK mRNA的表达量有下降的趋势,而AMPK-α1mTOR mRNA的表达量显著下降(P<0.05);日粮添加亮氨酸促使IUGR仔猪空肠AKP及线粒体MDH和SDH活性显著升高(P<0.05),Na+/K+-ATP活性和ATP含量有升高的趋势,SGLT1、GLUT2、AMPK-α1mTOR mRNA的表达量显著升高(P<0.05)。[结论]日粮中添加亮氨酸能够有效提高IUGR仔猪小肠葡萄糖吸收和能量代谢关键酶活性及基因表达量,促进小肠的发育,改善小肠葡萄糖吸收和能量代谢状态。
Abstract:
[Objectives] The paper aims to investigate the effects of leucine on the small intestinal glucose absolution and energy metabolism in weanling piglets with intrauterine growth retardation(IUGR). [Methods] Sixteen normal birth weight(NBW) piglets and sixteen IUGR piglets were selected according to birth weight. At weaning(14 days of age),both NBW and IUGR piglets were fed control diet(containing 1.45% leucine) or leucine diet(containing 1.80% leucine). Then,all piglets were randomly distributed into 4 treatments:NC(NBW+control diet),NL(NBW+leucine diet),IC(IUGR+control diet) and IL(IUGR+leucine diet) for 21 d(n=8). Totally 8 piglets were selected from each group and slaughtered,and the jejunal enzyme activities and mRNA expression were measured.[Results] The results showed that the activities of AKP,Na+/K+-ATPase,PK and the content of ATP in the jejunum,and the activity of MDH in the jejunal mitochondria were markedly decreased in IUGR piglets(P<0.05). A tendency toward decreased SGLT1 and PK mRNA expressions were observed in the jejunum,whilst IUGR significantly decreased AMPK-α1 and mTOR mRNA expressions(P<0.05). Consumption of the leucine diet significantly increased the activity of AKP in the jejunum,and the activities of MDH and SDH in the jejunal mitochondria of IUGR piglets(P<0.05),but Na+/K+-ATPase activity and ATP content in the jejunum showed a slight increase after leucine treatment,and there was a significant increase in SGLT1,GLUT2,AMPK-α1 and mTOR mRNA expressions(P<0.05). [Conclusions] These results indicate that dietary leucine supplementation could improve the small intestinal development,and ameliorate small intestinal glucose absorption and energy metabolic status,by increasing the key enzyme activities and gene expressions of glucose absorption and energy metabolic effectively.

参考文献/References:

[1] 张利环,李玲香,张瑜,等. 转录因子USF1调控鸡小肠上皮细胞中糖类转运蛋白表达[J]. 畜牧兽医学报,2015,46(10):1713-1720. Zhang L H,Li L X,Zhang Y,et al. Transcripition factor USF1 regulate the expression of monosaccharide transporter in chicken intestinal epithelial cells[J]. Acta Veterinaria et Zootechnica Sinica,2015,46(10):1713-1720(in Chinese with English abstract).
[2] Kellett G L,Brot-Laroche E,Mace O J,et al. Sugar absorption in the intestine:the role of GLUT2[J]. Annu Rev Nutr,2008,28:35-54.
[3] Gorboulev V,Schürmann A,Vallon V,et al. Na+-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion[J]. Diabetes,2012,61(1):187-196.
[4] Wood I S,Trayhurn P. Glucose transporters(GLUT and SGLT):expanded families of sugar transport proteins[J]. British Journal of Nutrition,2003,89(1):3-9.
[5] Wu G,Bazer F W,Wallace J M,et al. Board-invited review:intrauterine growth retardation:implications for the animal sciences[J]. J Anim Sci,2006,84(9):2316-2337.
[6] Lockwood C,Weiner S. Assessment of fetal growth[J]. Clinics in Perinatology,1986,13(1):3-35.
[7] Sadiq H F,Das U G,Tracy T F,et al. Intra-uterine growth restriction differentially regulates perinatal brain and skeletal muscle glucose transporters[J]. Brain Research,1999,823(1):96-103.
[8] Yin Y,Yao K,Liu Z,et al. Supplementing L-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs[J]. Amino Acids,2010,39(5):1477-1486.
[9] Rennie M J,Tipton K D. Protein and amino acid metabolism during and after exercise and the effects of nutrition[J]. Annual Review of Nutrition,2000,20(1):457-483.
[10] Macotela Y,Emanuelli B,Bang A M,et al. Dietary leucine:an environmental modifier of insulin resistance acting on multiple levels of metabolism[J]. PLoS ONE,2011,6(6):e21187.
[11] Xu W,Bai K,He J,et al. Leucine improves growth performance of intrauterine growth retardation piglets by modifying gene and protein expression related to protein synthesis[J]. Nutrition,2016,32(1):114-121.
[12] Sun Y,Wu Z,Li W,et al. Dietary L-leucine supplementation enhances intestinal development in suckling piglets[J]. Amino Acids,2015,47(8):1517-1525.
[13] Nishitani S,Matsumura T,Fujitani S,et al. Leucine promotes glucose uptake in skeletal muscles of rats[J]. Biochemical and Biophysical Research Communications,2002,299(5):693-696.
[14] Bainor A,Chang L,Mcquade T J,et al. Bicinchoninic acid(BCA)assay in low volume[J]. Analytical Biochemistry,2011,410(2):310-312.
[15] Zhang J,Hu Z,Lu C,et al. Dietary curcumin supplementation protects against heat-stress-impaired growth performance of broilers possibly through a mitochondrial pathway[J]. J Anim Sci,2015,93(4):1656-1665.
[16] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[17] 李博,李伟,张昊,等. 日粮高胆碱水平对宫内发育迟缓猪背最长肌糖酵解的影响[J]. 南京农业大学学报,2015,38(2):324-329. DOI:10.7685/j.issn. 1000-2030.2015.02.022. Li B,Li W,Zhang H,et al. Effects of high dietary concentrations of choline on longissimus dorsi muscle glycolysis in intrauterine growth retardation pigs[J]. Journal of Nanjing Agricultural University,2015,38(2):324-329(in Chinese with English abstract).
[18] Kekuda R,Saha P,Sundaram U. Role of Sp1 and HNF1 transcription factors in SGLT1 regulation during chronic intestinal inflammation[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2008,294(6):G1354-G1361.
[19] Dong L,Zhong X,Ahmad H,et al. Intrauterine growth restriction impairs small intestinal mucosal immunity in neonatal piglets[J]. Journal of Histochemistry and Cytochemistry,2014,62(7):510-518.
[20] William O. Disorders of glucose homeostasis in the newborn[M]//Textbook of Clinical Pediatrics. Berlin,Heidelberg:Springer,2012:347-351.
[21] Cellini C,Xu J,Buchmiller-Crair T. Effect of epidermal growth factor on small intestinal sodium/glucose cotransporter-1 expression in a rabbit model of intrauterine growth retardation[J]. Journal of Pediatric Surgery,2005,40(12):1892-1897.
[22] 朱伟芬. 宫内营养不良及早期GH干预对大鼠AMPK-α1/SREBP-1c/ACC-1通路的影响及机制[D]. 杭州:浙江大学,2015. Zhu W F. Effects and mechanisms of intrauterine malnutrition and early growth hormone intervention on AMPK-α1/SREBP-1c/ACC-1 pathway in rats[D]. Hangzhou:Zhejiang University,2015(in Chinese with English abstract).
[23] Geddes K,Philpott D J. A new role for intestinal alkaline phosphatase in gut barrier maintenance[J]. Gastroenterology,2008,135(1):8-12.
[24] 王远孝. IUGR猪的生长与肠道发育及L-精氨酸和大豆卵磷脂的营养调控研究[D]. 南京:南京农业大学,2011. Wang Y X. Effect of IUGR on the growth and the intestinal development in postnatal pigs and the nutrition regulation by L-arginine and soya lecithine[D]. Nanjing:Nanjing Agricultural University,2011(in Chinese with English abstract).
[25] 石亚庆,孙玉轩,罗莉,等. 吉富罗非鱼亮氨酸需求量研究[J]. 水产学报,2014,38(10):1778-1785. Shi Y Q,Sun Y X,Luo L,et al. Dietary leucine requirement of tilapia(GIFT Oreochromis niloticus)[J]. Journal of Fisheries of China,2014,38(10):1778-1785(in Chinese with English abstract).
[26] Li H,Xu M,Lee J,et al. Leucine supplementation increases SIRT1 expression and prevents mitochondrial dysfunction and metabolic disorders in high-fat diet-induced obese mice[J]. American Journal of Physiology-Endocrinology and Metabolism,2012,303(10):E1234-E1244.
[27] Walker J,Jijon H,Diaz H,et al. 5-aminoimidazole-4-carboxamide riboside(AICAR)enhances GLUT2-dependent jejunal glucose transport:a possible role for AMPK[J]. Biochem J,2005,385:485-491.
[28] 姜发彬,袁庆启,王亚琼,等. 高精料日粮对奶牛肝脏氨基酸代谢的影响[J]. 畜牧与兽医,2016,48(5):55-60. Jiang F B,Yuan Q Q,Wang Y Q,et al. Effect of high concentrate diets on amino acid metabolism in dairy livers[J]. Animal Husbandry and Veterinary Medicine,2016,48(5):55-60(in Chinese).
[29] Cao M,Che L,Wang J,et al. Effects of maternal over-and undernutrition on intestinal morphology,enzyme activity,and gene expression of nutrient transportersin newborn and weaned pigs[J]. Nutrition,2014,30(11):1442-1447.
[30] 郑集,陈钧辉.普通生物化学[M]. 北京:高等教育出版社,2007. Zheng J,Chen J H. General Biochemistry[M]. Beijing:Higher Education Press,2007(in Chinese).
[31] Liao X H,Majithia A,Huang X,et al. Growth control via TOR kinase signaling,an intracellular sensor of amino acid and energy availability,with crosstalk potential to proline metabolism[J]. Amino Acids,2008,35(4):761-770.
[32] 车炼强. 宫内发育迟缓和营养对新生仔猪消化道生长发育及坏死性肠炎发生机理的研究[D]. 雅安:四川农业大学,2010. Che L Q. Effect of intrauterine growth restriction and nutrition on gut development and necrotizing enterocolitis in neonatal pigs[D]. Ya’an:Sichuan Agricultural University,2010(in Chinese with English abstract).
[33] Ogata E S,Swanson S L,Collins J W,et al. Intrauterine growth retardation:altered hepatic energy and redox states in the fetal rat[J]. Pediatric Research,1990,27(1):56-63.
[34] Selak M A,Storey B T,Peterside I,et al. Impaired oxidative phosphorylation in skeletal muscle of intrauterine growth-retarded rats[J]. American Journal of Physiology-Endocrinology and Metabolism,2003,285(1):E130-E137.
[35] Cianfarani S,Agostoni C,Bedogni G,et al. Effect of intrauterine growth retardation on liver and long-term metabolic risk[J]. International Journal of Obesity,2012,36(10):1270-1277.
[36] Yang J,Wong R K,Park M,et al. Leucine regulation of glucokinase and ATP synthase sensitizes glucose-induced insulin secretion in pancreatic β-cells[J]. Diabetes,2006,55(1):193-201.
[37] Zhong B,Sakai S,Saeki T,et al. Excess leucine intake induces serine dehydratase in rat liver[J]. Agricultural and Biological Chemistry,2007,71(10):2614-2617.
[38] Han J M,Jeong S J,Park M C,et al. Leucyl-tRNA synthetase is an intracellular leucine sensor for the mTORC1-signaling pathway[J]. Cell,2012,149(2):410-424.
[39] Tatpati L L,Irving B A,Tom A,et al. The effect of branched chain amino acids on skeletal muscle mitochondrial function in young and elderly adults[J]. The Journal of Clinical Endocrinology and Metabolism,2010,95(2):894-902.

相似文献/References:

[1]沈峰,张莉莉,霍永久,等.酪蛋白酶解物对宫内生长迟缓新生仔猪小肠生长发育的影响[J].南京农业大学学报,2006,29(3):59.[doi:10.7685/j.issn.1000-2030.2006.03.012]
 SHEN Feng,ZHANG Li-li,HUO Yong-jiu,et al.Effects of casein hydrolysate on the intestinal growth and development in intrauterine growth retardation neonatal piglets[J].Journal of Nanjing Agricultural University,2006,29(2):59.[doi:10.7685/j.issn.1000-2030.2006.03.012]
[2]李博,李伟,张昊,等.日粮高胆碱水平对宫内发育迟缓猪背最长肌糖酵解的影响[J].南京农业大学学报,2015,38(2):324.[doi:10.7685/j.issn.1000-2030.2015.02.022]
 LI Bo,LI Wei,ZHANG Hao,et al.Effects of high dietary concentrations of choline on longissimus dorsi muscle glycolysis in intrauterine growth retardation pigs[J].Journal of Nanjing Agricultural University,2015,38(2):324.[doi:10.7685/j.issn.1000-2030.2015.02.022]
[3]冯程程,白凯文,王安谙,等.日粮添加二甲基甘氨酸钠对宫内发育迟缓断奶仔猪肝脏抗氧化能力及免疫指标的影响[J].南京农业大学学报,2019,42(2):336.[doi:10.7685/jnau.201806011]
 FENG Chengcheng,BAI Kaiwen,WANG Anan,et al.Effect of N,N-dimethylglycine sodium salt supplementation on hepatic antioxidant capacity and immune indices in intrauterine growth retardation weanling piglets[J].Journal of Nanjing Agricultural University,2019,42(2):336.[doi:10.7685/jnau.201806011]
[4]黄强,徐稳,何进田,等.日粮补充亮氨酸对超早期断奶宫内发育迟缓仔猪内源消化酶活性及胰腺抗氧化能力的影响[J].南京农业大学学报,2017,40(1):123.[doi:10.7685/jnau.201511032]
 HUANG Qiang,XU Wen,HE Jintian,et al.Effects of dietary leucine supplementation on activities of endogenous digestive enzymes and pancreas antioxidant capacity in intrauterine growth retardation early weaning pigs[J].Journal of Nanjing Agricultural University,2017,40(2):123.[doi:10.7685/jnau.201511032]

备注/Memo

备注/Memo:
收稿日期:2016-02-25。
基金项目:国家重点基础研究发展计划项目(2012CB124703)
作者简介:黄强,硕士研究生。
通信作者:王恬,教授,博导,研究方向为动物营养与饲料科学,E-mail:twang18@163.com。
更新日期/Last Update: 1900-01-01