[1]程瑞,张虎平,程寅胜,等.蔷薇科果树TMT基因家族生物信息学分析[J].南京农业大学学报,2017,(4):601-610.[doi:10.7685/jnau.201612028]
 CHENG Rui,ZHANG Huping,CHENG Yinsheng,et al.Bioinformatics analysis of tonoplast monosaccharide transporter(TMT)gene family in fruit trees of Rosaceae[J].Journal of Nanjing Agricultural University,2017,(4):601-610.[doi:10.7685/jnau.201612028]
点击复制

蔷薇科果树TMT基因家族生物信息学分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
期数:
2017年4期
页码:
601-610
栏目:
出版日期:
2017-07-07

文章信息/Info

Title:
Bioinformatics analysis of tonoplast monosaccharide transporter(TMT)gene family in fruit trees of Rosaceae
作者:
程瑞 张虎平 程寅胜 王英珍 刘兴 王国明 张绍铃
南京农业大学园艺学院/梨工程技术研究中心, 江苏 南京 210095
Author(s):
CHENG Rui ZHANG Huping CHENG Yinsheng WANG Yingzhen LIU Xing WANG Guoming ZHANG Shaoling
College of Horticulture/Centre of Pear Engineering and Technology Research, Nanjing Agricultural University, Nanjing 210095, China
关键词:
液泡膜单糖转运蛋白(TMT)蔷薇科表达
Keywords:
tonoplast monosaccharide transporter(TMT)Rosaceaesugarexpression
分类号:
S661.2
DOI:
10.7685/jnau.201612028
摘要:
[目的]本文旨在对蔷薇科果树液泡膜单糖转运蛋白(TMT)基因家族成员进行鉴定,分析其染色体定位、序列特性、进化关系及在白梨中的表达特征,为蔷薇科果树TMT基因功能研究和利用奠定基础。[方法]基于苹果、草莓、梅、桃、白梨、西洋梨和黑树莓7个蔷薇科果树物种的全基因组测序结果,应用生物信息学方法进行序列分析,通过RT-qPCR技术分析白梨TMT基因在各器官组织中和果实不同发育阶段的表达特性。[结果]苹果、草莓、梅、桃、白梨、西洋梨和黑树莓等TMT基因家族成员数量分别为5、2、4、4、6、4、2,各物种TMT基因不均匀地分布在2~4条染色体上。TMT蛋白结构高度保守,均存在11个α螺旋跨膜结构域,氨基酸序列长度700左右,等电点(pI)为4.79~5.93,最大疏水系数为0.312~0.438,为疏水性蛋白,亚细胞定位预测均位于液泡膜。系统进化分析表明,7个蔷薇科果树物种的TMT家族基因明显聚为两组,组Ⅰ中的TMT基因可能为其主要的功能基因。TMT基因家族经历过2次全基因组复制事件,进化过程中主要受纯化选择作用。定量分析发现,白梨中鉴定的PbTMT1PbTMT2PbTMT3在成熟叶中和果实膨大期表达量最高,PbTMT4的表达量随着果实发育不断增高,PbTMT6的表达量在成熟叶中最高,而在果实发育后期急剧下降。[结论]蔷薇科果树TMT基因家族成员高度保守,主要在液泡膜上起重要功能,不仅在果实糖分积累过程中发挥重要作用,还参与了植物发育和抗逆过程。
Abstract:
[Objectives]In order to study the functional characterization of tonoplast monosaccharide transporter(TMT)genes in the future,TMT genes were identified in fruit trees of Rosaceae and their structural feature,phylogenetic tree,and expression characteristics in Pyrus bretschneideri were explored. [Methods]Based on the sequenced results of whole genome from Malus domestica,Fragaria×vesca,Prunus mume,Prunus persica,Pyrus bretschneideri,Pyrus communis and Rubus occidentalis,the sequences were analyzed by the method of bioinformation,and the expression characteristic of TMT genes in P. bretschneideri was analysed by RT-qPCR. [Results]The TMT genes number of M. domestica,F. vesca,P. mume,P. persica,P. bretschneideri,P. communis and R. occidentalis was 5,2,4,4,6,4,2,respectively. All of the TMT genes were highly conservative,and the amino acid sequences of all TMT genes were about 700,which contained 11 putative transmembrane α-helices,the theoretical isoelectric point(pI)from 4.79 to 5.93,the grand average of hydropathicity between 0.312 and 0.438,and the protein sequences were located in the vacuole membrane based on the subcellular localization prediction. Phylogenetic tree analysis showed that TMT genes could be classified into two groups. GroupⅠcontained main functional genes of TMT genes family. Evolutionary analysis showed that there were two whole genome duplication events of TMT gene family during the evolution process,and the selective pressure was main factors. The expression analysis in P. bretschneideri showed that the PbTMT1,PbTMT2 and PbTMT3 had higher expression in mature leaves,the expression of PbTMT4 increased with the development of fruit,and PbTMT6 had higher expression in mature leaf but declined sharply during the late stage of fruit development. [Conclusions]TMT gene family in fruit trees of Rosaceae contained a highly conserved domain,and the TMT genes localized in the vacuole membrane not only involved in fruit sugar accumulation but also involved in plant development and stress resistance.

参考文献/References:

[1] Yamaki S,Ino M. Alteration of cellular compartmentation and membrane permeability to sugars in immature and mature apple fruit[J]. Journal of the American Society for Horticultural Science,1992,117(6):951-954.
[2] Wormit A,Trentmann O,Feifer I,et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport[J]. The Plant Cell,2006,18(12):3476-3490.
[3] Wingenter K,Schulz A,Wormit A,et al. Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning,sugar signaling,and seed yield in Arabidopsis[J]. Plant Physiology,2010,154(2):665-677.
[4] Schulz A,Beyhl D,Marten I,et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. The Plant Journal,2011,68(10):129-136.
[5] Zeng L,Wang Z,Vainstein A,et al. Cloning,localization,and expression analysis of a new tonoplast monosaccharide transporter from Vitis vinifera L[J]. Journal of Plant Growth Regulation,2011,30:199-212.
[6] 马新立,秦源,魏晓钰,等. 苹果糖转运蛋白TMT基因的表达及其与糖积累的关系[J]. 园艺学报,2014,41(7):1317-1325.Ma X L,Qin Y,Wei X Y,et al. Sequence and expression analysis of apple tonoplast monosaccharide transporter TMT genes and their relationship with sugar accumulation in fruit[J]. Acta Horticulturae Sinica,2014,41(7):1317-1325(in Chinese with English abstract).
[7] Velasco R,Zharkikh A,Affourtit J,et al. The genome of the domesticated apple(Malus domestica Borkh)[J]. Nature Genetics,2010,42(6):833-839.
[8] Shulaev V,Sargent D J,Crowhurst R N,et al. The genome of woodland strawberry(Fragaria vesca)[J]. Nature Genetics,2010,43(2):109-116.
[9] Zhang Q X,Chen W B,Sun L D,et al. The genome of Prunus mume[J]. Nat Commun,2012,3:1318.
[10] Verde I,Abbott A G,Scalabrin S,et al. The high-quality draft genome of peach(Prunus persica)identifies unique patterns of genetic diversity,domestication and genome evolution[J]. Nature Genetics,2013,45(5):487-493.
[11] Wu J,Wang Z,Shi Z,et al. The genome of the pear(Pyrus bretschneideri Rehd)[J]. Genome Res,2013,23(6):396-408.
[12] Chagne D,Crowhurst R N,Pindo M,et al. The draft genome sequence of european pear(Pyrus communis L.’Bartlett’)[J]. PLoS ONE,2014,9:e92644.
[13] van Buren R,Bryant D,Bushakra J M,et al. The genome of black raspberry(Rubus occidentalis)[J]. The Plant Journal,2016,87(6):535-547.
[14] Tamura K,Stecher G,Peterson D,et al. MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution,2013,30(6):2725-2729.
[15] Hu B,Jin J P,Guo A Y,et al. GSDS 2.0:an upgraded gene feature visualization server[J]. Bioinformatics,2015,31(2):1296-1297.
[16] Yu C S,Lin C J,Hwang J K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions[J]. Protein Sci,2004,13(6):1402-1406.
[17] Bailey T L,Williams N,Misleh C,et al. MEME:discovering and analyzing DNA and protein sequence motifs[J]. Nucleic Acids Research,2006,34(2):W369-W373.
[18] Magali L,Patrice D,Gert T,et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research,2002,30(1):325-327.
[19] Lee T H,Tang H,Wang X,et al. PGDD:a database of gene and genome duplication in plants[J]. Nucleic Acids Research,2012,41:D1152-D1158.
[20] Zhang Z,Li J,Zhao X Q,et al. KaKs_Calculator:calculating Ka and Ks through model selection and model averaging[J]. Geno Prot Bioinfo,2006,4(4):259-263.
[21] Yamada K,Kojima T,Bantog N,et al. Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development[J]. Journal of Plant Physiology,2007,164(1):746-755.
[22] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2007,25(5):402-408.
[23] Marger M D,Saier M H. A major superfamily of transmembrane facilitators that catalyse uniport,symport and antiport[J]. Trends Biochem Sci,1993,18:13-20.
[24] Fawcett J A,Maere S,van de P Y. Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event[J]. Proc Natl Acad Sci USA,2009,106(14):5737-5742.
[25] Jaillon O,Aury J M,Noel B,et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449(7161):463-467.
[26] 伍涛. 丰水、鸭梨果实发育过程中糖积累特性及其与果实大小关系研究[D]. 南京:南京农业大学,2011.Wu T. The characteristics of sugar accumulation and its relationship with fruit size during the fruit development in’Fengshui’and’Yali’pear[D]. Nanjing:Nanjing Agricultural University,2011(in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2016-12-16。
基金项目:中央高校基本科研业务费专项资金(KYZ201510)
作者简介:程瑞,硕士研究生。
通信作者:张绍铃,教授,主要从事梨栽培与育种方面的研究,E-mail:nnzsl@njau.edu.cn。
更新日期/Last Update: 2017-07-07