[1]王炫清,苗嘉曦,陈兴,等.高效木质纤维素分解菌Aspergillusy fumigatus Z5原位分解小麦秸秆的研究[J].南京农业大学学报,2017,(4):671-680.[doi:10.7685/jnau.201610010]
 WANG Xuanqing,MIAO Jiaxi,CHEN Xing,et al.Insight into the degradation of wheat straw by an efficient lignocellulosic-decomposing fungus Aspergillus fumigatus Z5[J].Journal of Nanjing Agricultural University,2017,(4):671-680.[doi:10.7685/jnau.201610010]

高效木质纤维素分解菌Aspergillusy fumigatus Z5原位分解小麦秸秆的研究()




Insight into the degradation of wheat straw by an efficient lignocellulosic-decomposing fungus Aspergillus fumigatus Z5
王炫清 苗嘉曦 陈兴 孔志坚 刘东阳 沈其荣
南京农业大学江苏省固体有机废弃物资源化高技术研究重点实验室/江苏省有机固体废弃物资源化协同创新中心, 江苏 南京 210095
WANG Xuanqing MIAO Jiaxi CHEN Xing KONG Zhijian LIU Dongyang SHEN Qirong
Jiangsu Key Laboratory for Organic Solid Waste Utilization/Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
wheat strawlignocellulosecrystallinityatomic force microscope(AFM)2 dimensional nuclear magnetic resonance(2D NMR)
[目的]本研究旨在评价高效木质纤维素分解菌Aspergillus fumigatus Z5分解木质纤维素的能力,并以小麦秸秆为材料解析其分解过程。[方法]以小麦秸秆为唯一碳源,研究接种菌株Z5后小麦秸秆物理、化学特性及胞外水解酶活力,并结合扫描电镜、原子力显微镜、傅里叶红外光谱和二维核磁共振等方法,原位分析菌株Z5对小麦秸秆的分解过程。[结果]与对照相比,接种28 d后小麦秸秆的总碳相对含量减少了22.05%,总氮相对含量却增加了76.77%,而纤维素和半纤维素含量分别下降了36.97%和39.77%。电子扫描电镜和原子力显微镜观察结果表明,小麦秸秆表面在生物降解过程中发生了明显变化,28 d后表面出现孔洞,而且表面粗糙度由0.97%上升到43.83%。X-ray分析结果表明:随着降解时间的增加,小麦秸秆的结晶度由43.8%减小到28.3%,小麦秸秆中大部分的纤维素和半纤维素被菌株Z5分解。二维核磁共振分析结果表明:小麦秸秆中的多糖类、脂肪族类和芳香族类化合物都发生了分解,其中多糖类化合物最容易被降解,特别是β-D-木二糖和α-L-阿拉伯糖类化合物。[结论]菌株A.fumigatus Z5通过分泌多种胞外水解酶,从小麦秸秆的表面逐渐将纤维素、半纤维素等多糖类化合物分解,在农业废弃物处理及木质纤维类物质的资源化利用方面将具有较好的应用前景。
[Objectives]This paper was aimed to evaluate the lignocelluloses degrading capacity of an efficient lignocellulosic-decom-posing fungus Aspergillus fumigatus Z5 and analyze the biodegradation process of wheat straw. [Methods]The physicochemical characteristics changes of the wheat straw during the biodegradation were evaluated with various advanced analysis methods,such as scanning electronic microscope(SEM),atomic force microscope(AFM),Fourier transform infrared spectroscopy(FTIR),X-ray and heteronuclear singular quantum correlation(HSQC). [Results]The relative total carbon content decreased for 22.05% by comparing with the original wheat straw,while the relative total nitrogen content increased to 76.77% higher than that of the original sample. The contents of cellulose and hemicellulose also decreased to 36.97% and 39.77%,respectively. Images of SEM and AFM indicated that clear hole appeared on the surface of the wheat straw,and the roughness increased from 0.97% to 43.83%. The X-ray analysis results indicated that the crystallinity of the wheat straw decreased from 43.8% to 28.3% as the cultivation time,and most of the cellulose and hemicellulose were degraded by A.fumigatus Z5. The HSQC analysis results showed that the polysaccharide anomeric group,aliphatic group and aromatic group were the major components contained in the wheat straw,while the polysaccharide anomeric group was easer to degrade by A.fumigatus Z5,especially β-D-Xylp and α-L-Araf. [Conclusions]The strain of A.fumigatus Z5 owns an efficient capacity in lignocelluloses degradation by secreting various extracellular hydrolytic enzymes,and it would have a great potential to be applied in the agricultural solid wastes treatment and the bioenergy industry.


[1] Potters G,van Goethem D,Schutte F. Promising biofuel resources:lignocellulose and algae[J]. Nature Education,2010,3(9):14.
[2] Yang H,Yan R,Chen H,et al. Characteristics of hemicellulose,cellulose and lignin pyrolysis[J]. Fuel,2007,86(12):1781-1788.
[3] Mahesh V B,Innu C,Allan H G,et al. Effects of extracellular proteome on wheat straw pretreatment during solid-state fermentation of Phlebia radiata ATCC 64658[J]. International Biodeterioration and Biodegradation,2016,109:36-44.
[4] Liu D Y,Zhang R F,Yang X M,et al. Thermostable cellulase production of Aspergillus fumigatus Z5 under solid-state fermentation and its application in degradation of agricultural wastes[J]. International Biodeterioration and Biodegradation,2011,65(5):717-725.
[5] 路瑶,魏贤勇,宗志敏,等. 木质素的结构研究与应用[J]. 化学进展,2013,25(5):838-857.Lu,Y,Wei X Y,Zong Z M,et al. Structural investigation and application of lignin[J]. Progress in Chemistry,2013,25(5):838-857(in Chinese with English abstract).
[6] Lee D S,Wi S G,Lee Y G,et al. Characterization of a new α-L-arabinofuranosidase from Penicillium sp.LYG 0704,and their application in lignocelluloses degradation[J]. Molecular Biotechnology,2011,49(3):229-239.
[7] Andrade J P,Bispo A S,Marbach P A,et al. Production and partial characterization of cellulases from Trichoderma sp. is-05 isolated from sandy coastal plains of northeast Brazil[J]. Enzyme Research,2011,16:1-7.
[8] Sørensen A,Lübeck P S,Lübeck M,et al. β-glucosidases from a new Aspergillus species can substitute commercial β-glucosidases for saccharification of lignocellulosic biomass[J]. Canadian Journal of Microbiology,2011,57(8):638-650.
[9] Juház,T Z,Szengyel,K,Rézey,M,et al. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources[J]. Process Biochemistry,2005,40:3519-3525.
[10] 田维亮,葛振红,李继兴.棉子壳中半纤维素、纤维素和木质素含量的测定[J]. 中国棉花,2013,40(7):24-25.Tian W L,Ge Z X,Li J X. Determination of hemicellulose,cellulose and lignin contents in five samples of cotton seed shell[J]. Chinese Cotton,2013,40(7):24-25(in Chinese with English abstract).
[11] Rohit R,Baljit K,Surender S,et al. Evaluation of secretome of highly efficient lignocellulolytic Penicillium sp.Dal 5 isolated from rhizosphere of conifers[J]. Bioresource Technology,2016,216:958-967.
[12] 王斐.基质中木聚糖酶活力测定方法的研究进展[J]. 天津化工,2012,26(5):15-17.Wang F. The study of the xylanase activity determination method in different substrates[J]. Tianjin Chemical Industry,2012,26(5):15-17(in Chinese with English abstract).
[13] Linton,S M,Greenaway,P. Presence and properties of cellulase and hemicellulase enzymes of the gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes[J]. Journal of Experimental Biology,2004,207:4095-4104.
[14] Zara M,Kaisa M,Andres K,et al. Chemical characterization of hydrothermally pretreated and enzyme-digested wheat straw:an evaluation of recalcitrance[J]. Food Chemistry,2016,198:132-140.
[15] Kim S B,Lee S J,Lee J H,et al. Pretreatment of rice straw with combined process using dilute sulfuric acid and aqueous ammonia[J]. Biotechnology and Biofuels,2013,6(1):1-11.
[16] Howell C,Steenkjar H A C,Goodell B,et al. Temporal changes in wood crystalline cellulose during degradation by brown rot fungi[J]. International Biodeterioration and Biodegradation,2009,63(4):414-419.
[17] Rio J C D,Rencoret A J,Prinsen A P,et al. Structural characterization of wheat straw lignin as revealed by analytical pyrolysis,2D-NMR,and reductive cleavage methods[J]. Journal of Agricultural and Food Chemistry,2012,60:5922-5935.
[18] Ralph S A,Ralph J. NMR database of lignin and cell wall model compounds[EB/OL].[2016-08-20]. https://www.glbrc.org/databases_and_software/nmrdatabase/NMR_DataBase_2009_Complete.pdf.
[19] Chen Y N,Huang J X,Li Y P,et al. Study of the rice straw biodegradation in mixed culture of Trichoderma viride and Aspergillus niger by GC-MS and FTIR[J]. Environmental Science and Pollution Research,2015,22(13):9807-9815.
[20] de Castro A M,Castilho L R,Freire D M G,et al. Multivariate optimization and supplementation strategies for the simultaneous production of amylases,cellulases,xylanases,and proteases by Aspergillus awamori under solid-state fermentation conditions[J]. Applied Biochemistry and Biotechnology,2015,175:1588-1602.
[21] He Y F,Pang Y Z,Liu Y P,et al. Physicochemical characterization of rice straw pretreated with sodium hydroxide in the solid state for enhancing biogas production[J]. Energy and Fuel,2008,22:2775-2781.
[22] Bansal N,Tewari R,Soni R,et al. Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues[J]. Waste Management,2012,32(7):1341-1346.
[23] Yang X W,Ma F Y,Zeng Y L,et al. Structure alteration of lignin in corn stover degraded by white-rot fungus Irpex lacteus CD2[J]. International Biodeterioration and Biodegradation,2010,64(2):119-123.
[24] 马旭光,张宗舟. 航天诱变高产单细胞蛋白啤酒酵母YB-6菌株的筛选[J]. 中国饲料,2011,11(5):17-19.Ma X G,Zhang Z Z. Screening of high yield single cell protein Saccharomyces cerevisiae strain YB-6 induced by space radiation[J]. Chinese Feed,2011,11(5):17-19(in Chinese with English abstract).
[25] Kalogeris E,Christakopoulos P,Katapodis,et al. Production and characterization of cellulolytic enzymes from the thermophilic fungus Thermoascus aurantiacus under solid state cultivation of agricultural wastes[J]. Process Biochemistry,2003,38:1099-1104.
[26] Daniel J Y,Prasad K,Christopher G H,et al. Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis[J]. Bioenergy Resource,2013,6:211-221.


 SUN Jiang-hui,ZHANG Nan,SHEN Qi-rong,et al.Study on biodegrated ability of edible fungi to rice straw[J].Journal of Nanjing Agricultural University,2012,35(4):49.[doi:10.7685/j.issn.1000-2030.2012.06.009]
 HOU Liyuan,JIANG Jingwei,JIANG Jiandong,et al.Isolation of Pseudoxanthomonas sp.J1 and bioinformatics analysis of lignocellulose-degrading genes[J].Journal of Nanjing Agricultural University,2016,39(4):573.[doi:10.7685/jnau.201512026]


更新日期/Last Update: 2017-07-07