[1]李东芹,叶小丽,朱姣姣,等.氟对茶树花粉管抑制及其与NO关系的研究[J].南京农业大学学报,2017,40(6):993-997.[doi:10.7685/jnau.201702005]
 LI Dongqin,YE Xiaoli,ZHU Jiaojiao,et al.A study on fluorine inhibiting pollen tube growth and the relation with nitric oxide in tea plant(Camellia sinensis)[J].Journal of Nanjing Agricultural University,2017,40(6):993-997.[doi:10.7685/jnau.201702005]
点击复制

氟对茶树花粉管抑制及其与NO关系的研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年6期
页码:
993-997
栏目:
出版日期:
2017-11-10

文章信息/Info

Title:
A study on fluorine inhibiting pollen tube growth and the relation with nitric oxide in tea plant(Camellia sinensis)
作者:
李东芹 叶小丽 朱姣姣 潘俊廷 常品品 崔传磊 朱旭君 房婉萍 王玉花
南京农业大学园艺学院, 江苏 南京 210095
Author(s):
LI Dongqin YE Xiaoli ZHU Jiaojiao PAN Junting CHANG Pinpin CUI Chuanlei ZHU Xujun FANG Wanping WANG Yuhua
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
茶树花粉管NO
Keywords:
fluorineCamellia sinensispollen tubenitric oxide
分类号:
S571.1
DOI:
10.7685/jnau.201702005
摘要:
[目的] 茶树是超富集氟的植物,本文探究氟对茶树花粉萌发率和花粉管生长的作用及其与广谱信号分子一氧化氮(NO)的关系。[方法] 以无性系茶树品种‘龙井长叶’的花粉为材料,通过不同质量浓度的氟、NO供体(DEA NONOate)和NO清除剂(cPTIO)处理,研究了不同浓度氟和NO对茶树花粉离体萌发和花粉管生长的作用,并检测了氟处理后茶树花粉管中NO相对含量和NO合酶(NOS)的相对活性。[结果] 氟显著抑制花粉的萌发率和花粉管的伸长,加入25 μmol·L-1外源NO供体和氟共处理,增强了氟的抑制效应,而加入200 μmol·L-1 NO清除剂和氟共处理能够有效缓解氟的抑制效应。此外,氟处理促进茶树花粉管NO释放并伴随着NOS活性的提高。[结论] 氟抑制茶树花粉萌发和花粉管伸长与其诱导NO释放有关,且氟诱导的NO释放部分依赖于NOS的活性。
Abstract:
[Objectives] Fluorine can accumulate in tea plants (Camellia sinensis), but the machenism remains unclear. Here we detect the effect of fluorine on the pollen germination and pollen tube growth of C. sinenesis and its relationship with the broad-spectrum signal molecule nitric oxide (NO).[Methods] Pollen grains from a tea plant cultivar ‘Longjingchangye’ were used as the material. The effects of different concentrations of fluorine, NO donor (DEA NONOate)and NO scavenger (cPTIO)on pollen germination and pollen tube growth were detected by statistics methods. The relative NO content and NO synthase (NOS)activity in pollen tube of tea plant were measured by means of plant physiology and related commercial kits.[Results] The pollen germination rate and pollen tube elongation were significantly inhibited by fluorine. The inhibitory effect of fluorine was enhanced by the concentration of 25 μmol·L-1 exogenous NO donor and fluoride treatments, while the concentration of 200 μmol·L-1 NO scavenger effectively alleviated the inhibitory effect of fluorine. In addition, the NO production in pollen tubes was promoted by fluorine treatment along with the increase in NOS activity.[Conclusions] NO production was induced during fluorine inhibiting the pollen germination and pollen tube elongation of C. sinensis, and the induction of NO by fluorine was partly dependent on NOS activity.

参考文献/References:

[1] 高绪萍,王萍,王之让,等. 环境氟迁移与茶叶氟富集的关系[J]. 植物资源与环境,1997,6(2):43-47. Gao X P,Wang P,Wang Z R,et al. Relationship between environment fluorine transportation and fluorine enrichment in tea[J]. Journal of Plant Resources and Environment,1997,6(2):43-47(in Chinese).
[2] 唐茜,赵先明,杜晓,等. 氟对茶树生长、叶片生理生化指标与茶叶品质的影响[J]. 植物营养与肥料学报,2011,17(1):186-194. Tang Q,Zhao X M,Du X,et al. Effects of fluorine on growth,leaf physiological and biochemical indexes and quality of tea[J]. Plant Nutrition and Fertilizer Science,2011,17(1):186-194(in Chinese).
[3] Li C,Yang X,Hu J,et al. Effect of fluoride on aroma of tea leaves[J]. Fluoride,2013,46(1):25-28.
[4] 向勤锃,刘德华. 氟对人体的作用及茶树富氟的研究进展与展望[J]. 茶叶通讯2002(2):34-37. Xiang Q Z,Liu D H. Research progress and prospect of fluorine on human body and fluorine in tea plant[J]. Tea Communication,2002(2):34-37(in Chinese).
[5] 沙济琴,郑达贤. 福建茶树鲜叶含氟量的研究[J]. 茶叶科学,1994(1):37-42. Sha J Q,Zheng D X. Study on fluorine content of fresh tea leaves in Fujian[J]. Journal of Tea Science,1994(1):37-42(in Chinese).
[6] 小西茂毅,陈翠莲. 用氟刺激茶树花粉管生长和减轻铝对花粉管生长的抑制[J]. 茶叶,1986(4):56-60. Xiaoxi M Y,Chen C L. Alleviation of aluminum stress and stimulation of tea pollen tube growth by fluorine[J]. Tea,1986(4):56-60(in Chinese).
[7] Wendehenne D,Pugin A,Klessig D F,et al. Nitric oxide:comparative synthesis and signaling in animal and plant cells[J]. Trends in Plant Science,2001,6(4):177-183.
[8] Zottini M,Formentin E,Scattolin M,et al. Nitric oxide affects plant mitochondrial functionality in vivo[J]. FEBS Letters,2002,515:75-78.
[9] Takahashi S,Yamasaki H. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide[J]. FEBS Letters,2002,512:145-148.
[10] Beligni M V,Lamattina L. Nitric oxide stimulates seed germination and de-etiolation,and inhibits hypocotyl elongation,three light-inducible responses in plants[J]. Planta,2000,210(2):215-221.
[11] Pagnussat G C,Simontacchi M,Puntarulo S,et al. Nitric oxide is required for root organogenesis[J]. Plant Physiology,2002,129(3):954-956.
[12] Leshem Y Y,Wills R,Ku V. Evidence for the function of the free radical gas-nitric oxide[NO(center dot)]:as an endogenous maturation and senescence regulating factor in higher plants[J]. Plant Physiology and Biochemistry,1998,36(11):825-833.
[13] 桑建荣,蒋明义,陈永昌. 水分胁迫下玉米叶片中一氧化氮与钙和钙调素的相互作用[J]. 南京农业大学学报,2010,33(5):111-115.DOI:10.7685/j.issn.1000-2030.2010.05.021. Sang J R,Jiang M Y,Chen Y C. Interplay between nitric oxide and calcium/calmodulin in maize leaves(Zea mays L.)exposed to water stress[J]. Journal of Nanjing Agricultural University,2010,33(5):111-115(in Chinese with English abstract).
[14] 杨伟,陈发棣,陈素梅,等. 一氧化氮对高温胁迫下菊花生理特性的影响[J]. 南京农业大学学报,2011,34(1):41-45. DOI:10.7685/j.issn.1000-2030.2011.01.008. Yang W,Chen F D,Chen S M,et al. Effects of exogenous nitric oxide on physiological characteristics in chrysanthemum under heat stress[J]. Journal of Nanjing Agricultural University,2011,34(1):41-45(in Chinese with English abstract).
[15] Prado A M,Colaco R,Moreno N,et al. Targeting of pollen tubes to ovules is dependent on nitric oxide(NO)signaling[J]. Molecular Plant,2008,1(4):703-714.
[16] He J,Bai X,Wang R,et al. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro[J]. Physiologia Plantarum,2007,131(2):273-282.
[17] 王伟东,蒋芯,杜昱林,等. 低温对茶树花粉管抑制作用与NO关系的研究[J]. 园艺学报,2013,40(8):1535-1540. Wang W D,Jiang X,Du Y L,et al. A study on the involvement of nitric oxide in inhibiting pollen tube growth of tea plant(Camellia sinensis)under low-temperature[J]. Acta Horticulturae Sinica,2013,40(8):1535-1540(in Chinese with English abstract).
[18] 陈暄,彭英,郝姗,等. 茶树花粉的离体萌发研究[J]. 江苏农业科学,2010(6):233-235. Chen X,Peng Y,Hao S,et al. Study on in vitro germination of tea pollen[J]. Jiangsu Agricultural Sciences,2010(6):233-235(in Chinese).
[19] Vaknin Y,Eisikowitch D. Effects of short-term storage on germinability of pistachio pollen[J]. Plant Breeding,2000,119(4):347-350.
[20] Liu Y,He J,Jiang L,et al. Nitric oxide production is associated with response to brown planthopper infestation in rice[J]. Journal of Plant Physiology,2011,168(8):739-745.
[21] Ding L,Zhang J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells[J]. Acta Pharmacologica Sinica,2012,33(1):75-81.
[22] Sabal D,Khan T L,Saxena R. Effect of sodium fluoride on cluster bean(Cyamopsis tetragonoloba)seed germination and seedling growth[J]. Fluoride,2006,39(3):228-230.
[23] Fornasiero R B. Fluorides effects on Hypericum perforatum plants:first field observations[J]. Plant Science,2003,165(3):507-513.
[24] Mcdonough A M,Dixon M J,Terry D T,et al. Probability of foliar injury for Acer sp. based on foliar fluoride concentrations[J]. Environmental Monitoring and Assessment,2016,188:685.
[25] Li C,Zheng Y,Zhou J,et al. Changes of leaf antioxidant system,photosynthesis and ultrastructure in tea plant under the stress of fluorine[J]. Biologia Plantarum,2011,55(3):563-566.
[26] Yang X,Yu Z,Zhang B,et al. Effect of fluoride on the biosynthesis of catechins in tea[Camellia sinensis(L.)O. Kuntze]leaves[J]. Scientia Horticulturae,2015,184:78-84.
[27] Singh N,Bhatla S C. Nitric oxide and iron modulate heme oxygenase activity as a long distance signaling response to salt stress in sunflower seedling cotyledons[J]. Nitric Oxide Biology and Chemistry,2016,53:54-64.
[28] Abramowski D,Arasimowicz-Jelonek M,Izbianska K,et al. Nitric oxide modulates redox-mediated defense in potato challenged with Phytophthora infestans[J]. European Journal of Plant Pathology,2015,143(2):237-260.
[29] Wang Y,Chen T,Zhang C,et al. Nitric oxide modulates the influx of extracellular Ca2+ and actin filament organization during cell wall construction in Pinus bungeana pollen tubes[J]. New Phytologist,2009,182(4):851-862.
[30] Wang Y,Li X,Zhuge Q,et al. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro[J]. PLoS ONE,2012,7(12):e52436.
[31] Chandok M R,Ytterberg A J,van Wijk K J,et al. The pathogen-inducible nitric oxide synthase(iNOS)in plants is a variant of the protein of the glycine decarboxylase complex[J]. Cell,2003,113(4):469-482.

相似文献/References:

[1]朱林,江昌俊,叶爱华,等.茶树ATP硫化酶和硒半胱氨酸甲基转移酶基因植物表达载体的构建[J].南京农业大学学报,2008,31(2):121.[doi:10.7685/j.issn.1000-2030.2008.02.025]
 ZHU Lin,JIANG Chang-jun,YE Ai-hua,et al.Construction of plant expressing vectors of ATP sulfurylase and selenocysteine methyltransferase genes from Camellia sinensis[J].Journal of Nanjing Agricultural University,2008,31(6):121.[doi:10.7685/j.issn.1000-2030.2008.02.025]
[2]李远华,江昌俊,余有本.茶树β-葡萄糖苷酶基因mRNA的表达[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.022]
[3]韦朝领,江昌俊,陶汉之,等.茶树紫黄素脱环氧化酶基因的cDNA 克隆及其生物信息学分析[J].南京农业大学学报,2003,26(1):14.[doi:10.7685/j.issn.1000-2030.2003.01.004]
 WEI Chao ling,JIANG Chang jun,TAO Han zhi,et al.Cloning and bioinformatics analysis of sequence signature of violaxanthin de-epoxidase cDNA in tea plant ( Camellia sinensis (L.) O.Kuntzes )[J].Journal of Nanjing Agricultural University,2003,26(6):14.[doi:10.7685/j.issn.1000-2030.2003.01.004]
[4]江昌俊,李叶云,王朝霞.茶树鲜叶中β-葡萄糖苷酶提取条件的研究[J].南京农业大学学报,2000,23(2):93.[doi:10.7685/j.issn.1000-2030.2000.02.023]
 Jiang Changjun,Li Yeyun,Wang Zhaoxia.Study on the extraction conditions of β?glucosidase in fresh leaves of tea plant[J].Journal of Nanjing Agricultural University,2000,23(6):93.[doi:10.7685/j.issn.1000-2030.2000.02.023]
[5]余有本,江昌俊,王朝霞,等.茶树咖啡碱合酶cDNA 在大肠杆菌中的表达[J].南京农业大学学报,2004,27(4):105.[doi:10.7685/j.issn.1000-2030.2004.04.024]
 YU You-ben,JIANG Chang-jun,WANG Zhao-xia,et al.Expression of tea caffeine synthase cDNA in Escherichia coli[J].Journal of Nanjing Agricultural University,2004,27(6):105.[doi:10.7685/j.issn.1000-2030.2004.04.024]
[6]阮旭,张玥,杨忠星,等.果茶间作模式下茶树光合特征参数的日变化[J].南京农业大学学报,2011,34(5):53.[doi:10.7685/j.issn.1000-2030.2011.05.010]
 RUAN Xu,ZHANG Yue,YANG Zhong-xing,et al.Diurnal variation of photosynthetic characteristic parameters of tea plant under fruit-tea intercropping patterns[J].Journal of Nanjing Agricultural University,2011,34(6):53.[doi:10.7685/j.issn.1000-2030.2011.05.010]
[7]房婉萍,张玥,阮光兴,等.茶树CsH1基因结构及其内含子信息分析[J].南京农业大学学报,2012,35(4):37.[doi:10.7685/j.issn.1000-2030.2012.04.007]
 FANG Wan-ping,ZHANG Yue,RUAN Guang-xing,et al.Analysis of genomic structure and introns of CsH1 gene from tea plant[J].Journal of Nanjing Agricultural University,2012,35(6):37.[doi:10.7685/j.issn.1000-2030.2012.04.007]
[8]刘腾腾,赵强,郜红建,等.有机酸与根表铁膜对茶树吸收和富集氟的影响[J].南京农业大学学报,2013,36(1):72.[doi:10.7685/j.issn.1000-2030.2013.01.013]
 LIU Tengteng,ZHAO Qiang,GAO Hongjian,et al.Effects of organic acids and iron plaque outside roots on absorption and accumulation of fluoride in tea plants[J].Journal of Nanjing Agricultural University,2013,36(6):72.[doi:10.7685/j.issn.1000-2030.2013.01.013]
[9]胡雲飞,张玥,张彩丽,等.茶树根系内生真菌与根际土壤真菌的季节多样性分析[J].南京农业大学学报,2013,36(3):41.[doi:10.7685/j.issn.1000-2030.2013.03.007]
 HU Yunfei,ZHANG Yue,ZHANG Caili,et al.Diversity analysis of the endophytic fungi in root and fungi in rhizosphere soil of tea plant in different seasons[J].Journal of Nanjing Agricultural University,2013,36(6):41.[doi:10.7685/j.issn.1000-2030.2013.03.007]
[10]吴致君,卢莉,黎星辉,等.茶树AP2/ERF-B3类转录因子基因的克隆与表达特性分析[J].南京农业大学学报,2014,37(4):67.[doi:10.7685/j.issn.1000-2030.2014.04.010]
 WU Zhijun,LU Li,LI Xinghui,et al.Isolation and expression profiles analysis of AP2/ERF-B3 group transcription factor from Camellia sinensis[J].Journal of Nanjing Agricultural University,2014,37(6):67.[doi:10.7685/j.issn.1000-2030.2014.04.010]
[11]张显晨,杨天元,王玉梅,等.Ca2+信号在DIDS(4,4-二异硫氰-2,2-二磺酸)抑制茶树吸收氟的功能研究[J].南京农业大学学报,2016,39(3):441.[doi:10.7685/jnau.201510029]
 ZHANG Xianchen,YANG Tianyuan,WANG Yumei,et al.The role of Ca2+ signal on DIDS(4, 4-diisothiocyanostilbene-2, 2-disulfonic acid)-inhibited fluoride absorption in tea plants(Camellia sinensis L.)[J].Journal of Nanjing Agricultural University,2016,39(6):441.[doi:10.7685/jnau.201510029]

备注/Memo

备注/Memo:
收稿日期:2017-02-08。
基金项目:国家自然科学基金项目(31370014,31370688);中央高校基本科研业务费专项资金(KYZ201509);中央财政林业科技推广示范资金项目([2015]TJS01);安徽农业大学茶树生物学与资源利用国家重点实验室开放基金课题(SKLTOF20150113)
作者简介:李东芹,硕士研究生。
通信作者:王玉花,副教授,研究方向为茶树栽培育种,E-mail:wangyuhua@njau.edu.cn。
更新日期/Last Update: 1900-01-01