[1]覃孔昌,颜成,王电站,等.生物聚沉氧化法快速处理奶牛场粪污废水的研究[J].南京农业大学学报,2017,40(6):1058-1064.[doi:10.7685/jnau.201701040]
 QIN Kongchang,YAN Cheng,WANG Dianzhan,et al.A novel approach of dairy cattle slurry treatment by using biological coagulation removal of suspended solids followed by sequencing batch reactor process[J].Journal of Nanjing Agricultural University,2017,40(6):1058-1064.[doi:10.7685/jnau.201701040]
点击复制

生物聚沉氧化法快速处理奶牛场粪污废水的研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年6期
页码:
1058-1064
栏目:
出版日期:
2017-11-10

文章信息/Info

Title:
A novel approach of dairy cattle slurry treatment by using biological coagulation removal of suspended solids followed by sequencing batch reactor process
作者:
覃孔昌 颜成 王电站 崔春红 周立祥
南京农业大学资源与环境科学学院环境工程系, 江苏 南京 210095
Author(s):
QIN Kongchang YAN Cheng WANG Dianzhan CUI Chunhong ZHOU Lixiang
Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
奶牛场粪污生物聚沉氧化法序批式活性污泥法脱水性能出水
Keywords:
dairy cattle slurrybiological coagulation oxidation processsequencing batch reactor(SBR)dewaterabilityeffluent
分类号:
X703.1
DOI:
10.7685/jnau.201701040
摘要:
[目的] 生物聚沉氧化法是一种利用产絮凝剂的微生物对粪污进行处理,然后固液分离去除粪污中的悬浮固体(SS),继而采用常规的生化方法处理固液分离后清澈废水的方法。[方法] 针对奶牛场固液分离所产生的"浓浆水"高含固率、高化学需氧量(COD)和高氨氮的特点,通过摇瓶培养试验、中试试验和序批式活性污泥法(SBR)处理试验,研究不同处理下生物聚沉氧化法对奶牛场粪污除渣和生物净化的效果。[结果] 奶牛场粪污经生物聚沉处理后脱水效果得到了提高,比阻大幅度降低:粪污比阻从初始9.8×1013 m·kg-1下降到24 h时的0.73×1012 m·kg-1,降低了99.26%。在最佳处理条件下进行多批次中试研究,并采用隔膜厢式压滤机进行压滤脱水。经生物聚沉反应后,压滤机粪污处理量大幅度提高,其压滤粪饼含水率在60.90%左右,比原始稀释粪污压滤粪饼体积减少了近87.09%,达到了粪污明显减量化的目的,且粪饼干基有机质含量几乎不损失,有利于后续资源化利用。此外,压滤出水中COD、SS、总氮(TN)、氨氮(NH3-N)和总磷(TP)含量分别从原始粪污的91 470、69 500、5 125、957和129 mg·L-1一步降低到1 776、<10、262、236和1.89 mg·L-1,去除率分别达到98.06%、99.98%、94.89%、75.34%和98.53%。压滤水再经SBR工艺处理,出水水质基本达到国家标准《畜禽养殖业污染物排放标准:GB 18596-2001》,出水可用于奶牛场自身牛舍冲洗用水和绿化用水等,生物聚沉氧化法系统处理时间不足48 h,比传统工艺时间大幅缩短。[结论] 采用生物聚沉氧化法处理处置奶牛场粪污具有较高的潜在应用价值。
Abstract:
[Objectives] Biological coagulation and oxidation of dairy cattle slurry was a process by which suspended solid (SS)in the slurry was removed by using flocculant-producing microorganisms followed by diaphragm pressure filter to separate solid and liquid, then the filtrate was biologically purified by sequencing batch reactor (SBR)model.[Methods] Dairy cattle slurry is characterized by high concentration of suspended solid, chemical oxygen demand (COD), and ammonia nitrogen. In this study, dewaterability of dairy cattle slurry facilitated by biological coagulation process was investigated through batch flask experiments, pilot scale testes and SBR experiments.[Results] Results showed that dewaterability of dairy cattle slurry was improved after biological coagulation, exhibiting a significant reduction for specific resistance to filtration (SRF)of the slurry. SRF value decreased from initial 9.8×1013 m·kg-1 to final 0.73×1012 m·kg-1 after 24 hours of biological coagulation reaction with the reduction of 99.26% compared to the control. The bio-coagulated slurry was dewatered by chamber filter press to produce a clear filtrate without SS and a semi-drying cake with the moisture content of about 60.90%. As a result, sludge volume was reduced by 87.09% compared with the control. Moreover, the semi-drying dewatered slurry cake contained similar levels of organic matter to original dairy cattle slurry on dry basis, indicating that it was conducive to its consequent reutilization. At the same time, the concentration of COD, SS, total nitrogen (TN), NH3-N, and total phosphate (TP)in the filtrate decreased to 1 776, <10, 262, 236 and 1.89 mg·L-1 from initial 91 470, 69 500, 5 125, 957 and 129 mg·L-1 with removal efficiencies of 98.06%, 99.98%, 94.89%, 75.34% and 99.85%, respectively. Furthermore, the filtrate was purified by SBR model, the effluent quality almost met the Discharge Standard of Pollutants for Livestock and Poultry Breeding:GB 18596-2001, implying that the effluent could be acted as reclaimed water. The overall disposal time was less than 48 hours which was much shorter than the traditional process.[Conclusions] Biological coagulation and oxidation process has better potential for the treatment and disposal of dairy cattle slurry.

参考文献/References:

[1] 孔亮,宋毅. 中国畜牧业年鉴[M]. 北京:中国农业出版社,2013:189. Kong L,Song Y. China Animal Industry Yearbook[M]. Beijing:China Agriculture Press,2013:189(in Chinese).
[2] 武海玉. 奶牛场环境污染与生态循环养殖模式[J]. 中国畜禽种业,2014(7):33-35. Wu H Y. Dairy environmental pollution and ecological recirculating mode[J]. The Chinese Livestock and Poultry Breeding,2014(7):33-35(in Chinese).
[3] 钱恺. 牛粪好氧堆肥曝气特性分析与腐熟度评价方法的研究[D]. 镇江:江苏大学,2009. Qian K. Study on the aeration characteristic and maturity evaluation method of composting on cattle manure[D]. Zhenjiang:Jiangsu University,2009(in Chinese with English abstract).
[4] 武深树. 禽畜粪便污染治理的环境成本控制和区域适宜性分析[M]. 长沙:湖南科技出版社,2013:9-16. Wu S S. The Control of Environmental Cost and Regional Suitability Analysis of Livestock Manure Pollution Control[M]. Changsha:Hunan Science and Technology Press,2013:9-16(in Chinese).
[5] 章保. 规模化奶牛养殖场粪污处理应用研究[D]. 武汉:华中科技大学,2007. Zhang B. The application study on treatment of milk cattle waste in large-scale farm[D]. Wuhan:Huazhong University of Science and Technology,2007(in Chinese with English abstract).
[6] 封培. 高效生物絮凝剂产生菌的分离鉴定及其应用研究[D]. 南京:南京农业大学,2009. Feng P. Isolation,identification and application of a bioflocculant-producing bacterium[D]. Nanjing:Nanjing Agricultural University,2009(in Chinese with English abstract).
[7] 崔巍. SBR中培养好氧颗粒污泥降解硝基苯及反应器运行工艺研究[D]. 南京:南京农业大学,2015. Cui W. Cultivation of aerobic granular sludge for degrading nitrobenzene in SBR and its characteristics studying[D]. Nanjing:Nanjing Agricultural University,2015(in Chinese with English abstract).
[8] Othman I,Anuar A N,Ujang Z,et al. Livestock wastewater treatment using aerobic granular sludge[J]. Bioresource Technology,2013,133:630-634.
[9] 周立祥. 污泥生物沥浸处理技术及其工程应用[J]. 南京农业大学学报,2012,35(5):154-166. DOI:10.7685/j.issn.1000-2030.2012.05.017. Zhou L X. Bioleaching role in improving sludge in-deep dewatering and removal of sludge-borne metals and its engineering application[J]. Journal of Nanjing Agricultural University,2012,35(5):154-166(in Chinese with English abstract).
[10] 胡金财,谈振娇,张轶,等. 污泥生物沥浸法深度脱水工程及其运行效果分析[J]. 给水排水,2013,9(7):48-52. Hu J C,Tan Z J,Zhang Y,et al. Bioleaching role in improving sludge in-deep dewatering engineering and analysis of its operation result[J]. Water and Wastewater Engineering,2013,9(7):48-52(in Chinese).
[11] 宋永伟,周立祥,刘奋武. 生物沥浸对精对苯二甲酸化工污泥脱水性能的提高及其重金属脱除效果[J]. 环境科学学报,2012,32(10):2455-2460. Song Y W,Zhou L X,Liu F W. Removal of heavy metals and dewaterability of pure terephthalic acid sludge facilitated by bioleaching[J]. Acta Scientiae Circumstantiae,2012,32(10):2455-2460(in Chinese with English abstract).
[12] Lu M C,Li C J,Liao C H,et al. Dewatering of activated sludge by Fenton’s reagent[J]. Advances in Environmental Research,2003,7(3):667-670.
[13] 周立祥. 固体废弃物处理处置与资源化[M]. 北京:中国农业出版社,2007:20-130. Zhou L X. Treatment Disposal and Recycling of Solid Waste[M]. Beijing:China Agriculture Press,2007:20-130(in Chinese).
[14] Wang X Y,Zeng G M,Zhu J L. Treatment of jean-wash wastewater by combined coagulation,hydrolysis/acidification and Fenton oxidation[J]. Journal of Hazardous Materials,2008,153(1/2):810-816.
[15] Hu H S,Yang M D,Dang J. Treatment of strong acid dye wastewater by solvent extraction[J]. Separation and Purification Technology,2005,42(2):129-136.
[16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社,2002:236-246,255-284. Ministry of Environmental Protection of the People’s Repubilc of China. Water and Wastewater Detection and Analysis Method[M]. 4th ed. Beijing:China Environmental Science Press,2002:236-246,255-284(in Chinese).
[17] 鲍士旦. 土壤农化分析[M]. 3版. 北京:中国农业出版社,2005:39-54. Bao S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing:China Agriculture Press,2005:39-54(in Chinese).
[18] 高廷耀. 水污染控制工程[M]. 2版. 北京:高等教育出版社,2002:302-313. Gao T Y. Control Engineering of Water Pollution[M]. 2nd ed. Beijing:Higher Education Press,2002:302-313(in Chinese).
[19] Wu C C,Wu J J,Huage R Y. Floc strength and dewatering efficiency of alum sludge[J]. Advances in Environmental Research,2003,7(3):617-621.
[20] 陈花果,伍素兰. 提高石油化工污泥脱水性能试验研究[J]. 西安地质学院学报,1996,18(3):100-105. Chen H G,Wu S L. Study of improving of dehydration of petrochemical sludge[J]. Journal of Xi’an Geology College,1996,18(3):100-105(in Chinese with English abstract).
[21] 国家环境保护总局科技标准司. 污废水处理设施运行管理[M]. 北京:北京出版社,2006:309-321. Department of Science,Technology and Standards of Ministry of Environmental Protection of the People’s Repubilc of China. Operation and Management of Sewage and Waste Water Treatment Facilities[M]. Beijing:Beijing Press,2006:309-321(in Chinese).

备注/Memo

备注/Memo:
收稿日期:2017-01-21。
基金项目:国家自然科学基金项目(21277071);国家高技术研究发展计划项目(2012AA063501)
作者简介:覃孔昌,硕士研究生。
通信作者:周立祥,教授,主要从事固体废物处理和环境污染化学研究,E-mail:lxzhou@njau.edu.cn。
更新日期/Last Update: 1900-01-01