[1]蔡天晋,戴越,单培源,等.不同施肥方式下土壤颗粒稳定性及其对四环素吸附能力的影响[J].南京农业大学学报,2017,40(6):1065-1073.[doi:10.7685/jnau.201704003]
 CAI Tianjin,DAI Yue,SHAN Peiyuan,et al.Effect of different fertilization on stability of soil particles and their tetracycline adsorption characteristics[J].Journal of Nanjing Agricultural University,2017,40(6):1065-1073.[doi:10.7685/jnau.201704003]
点击复制

不同施肥方式下土壤颗粒稳定性及其对四环素吸附能力的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
40卷
期数:
2017年6期
页码:
1065-1073
栏目:
出版日期:
2017-11-10

文章信息/Info

Title:
Effect of different fertilization on stability of soil particles and their tetracycline adsorption characteristics
作者:
蔡天晋 戴越 单培源 姜灿烂 杜雨昕 赵言文 蔡天明 陈立伟
南京农业大学资源与环境科学学院, 江苏 南京 210095
Author(s):
CAI Tianjin DAI Yue SHAN Peiyuan JIANG Canlan DU Yuxin ZHAO Yanwen CAI Tianming CHEN Liwei
College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
施肥土壤颗粒凝聚动力学四环素吸附
Keywords:
fertilizationsoil colloidaggregation kinetictetracyclineadsoption
分类号:
S153
DOI:
10.7685/jnau.201704003
摘要:
[目的] 针对不同施肥方式的农田,分析土壤胶体的稳定性及其对四环素的吸附能力,探讨四环素在土壤中的胶体运移性变化。[方法] 设置不施肥对照(CK)、单施化肥(NPK)和施用有机肥(OF)3种处理,湿筛沉降法筛分制备0.053~2 mm,0.002~0.053 mm和<0.002 mm (土壤胶体)3个粒径组土壤颗粒,采用静置沉降和动态激光散射技术分析土壤颗粒的分散稳定性,探讨不同电解质条件下土壤胶体的凝聚动力学,用zeta电位测定仪测定不同电解质溶液下土壤胶体表面电位的变化。最后,通过吸附动力学和等温吸附试验分析不同粒径组土壤颗粒对四环素的吸附能力。[结果] CK处理中土壤胶体含量最高,且更容易凝聚,稳定性最差;施用有机肥显著提高了土壤中大颗粒(0.053~2 mm)含量,减少了土壤胶体的释放。土壤胶体临界凝絮浓度从大到小的处理分别为OF、NPK、CK。土壤颗粒对四环素的吸附能力在OF处理中最强;土壤胶体对四环素的吸附能力均远大于其他粒径的土壤颗粒和原土。[结论] 施用有机肥更有利于土壤大颗粒的形成,未团聚土壤胶体粒级更小,zeta电位更负,在水体中稳定性更强,对四环素的吸附能力也更强。因此,施用有机肥可有效减少土壤中胶体的释放,并能提高胶体在水体中的稳定性及对污染物四环素的吸附,从而影响污染物四环素在土壤中的分布和迁移。
Abstract:
[Objectives] The aim of this study was to analyze the stability of soil colloid and its ability to adsorb tetracycline from farmland soil under different fertilizations which aims to provide a theoretical basis for clarifying the colloid facilated-migration of tetracycline in soil.[Methods] The soil particles were divided into three fractions:0.053-2 mm, 0.002-0.053 mm and <0.002 mm (soil colloid), respectively. The soil fertilization treatments were without fertilization (CK), chemical fertilizers only (NPK)and organic manure (OF). The dispersion stability of different soil colloids was analyzed by combination of static sedimentation method and dynamic light scattering technique. The kinetics of soil colloid under different electrolyte conditions was investigated. The effect of different electrolyte solutions on the surface potential of soil colloid was determined by zeta potential analyzer. Finally, the adsorption capacity, kinetics and isotherm of tetracycline on soil with different particle size were analyzed by batch adsorption method.[Results] The application of organic manure could significantly increase the content of large aggregates in soil and decrease the release of colloid. The released colloid content was highest in CK. The colloid in CK was easier to deposit and possessed the lowest stability. The critical coagulation concentration of soil colloid was in the order of OF, NPK and CK, indicating that the application of organic fertilizer will increase the soil colloid in the water. The addition of electrolyte could reduce the absolute value of zeta potential for the soil colloid, and then promote the soil colloid coagulation. The adsorption capacity of tetracycline in the soil in OF treatment was higher than other treatments. Among various particle sizes, soil colloid had the highest adsorption capacity towards tetracycline.[Conclusions] The application of chemical fertilizers and organic fertilizers could reduce the release of soil colloid. However, the application of organic manure was more favorable for the formation of large aggregates. For the soil colloid from OF treatment, the particle size was smaller, the zeta potential was higher, and the adsorption capacity of tetracycline was stronger compared to soil colloids in other treatments. Therefore, the application of organic fertilizer can effectively reduce the release of colloid in soil. However, it can also improve the stability of colloid in water and the adsorption capacity for tetracycline, thus affecting the distribution and migration of pollutant tetracycline in soil structure.

参考文献/References:

[1] 熊毅. 土壤胶体[M]. 2版. 北京:科学出版社,1985. Xiong Y. Soil Colloid[M]. 2nd ed. Beijing:Science Press,1985(in Chinese).
[2] Yin X,Gao B,Ma L Q,et al. Colloid-facilitated Pb transport in two shooting-range soils in Florida[J]. Journal of Hazardous Materials,2010,177(1/2/3):620-625.
[3] Ryan J N,Elimelech M. Colloid mobilization and transport in groundwater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,107(95):1-56.
[4] Kersting A B,Efurd D W,Finnegan D L,et al. Migration of plutonium in ground water at the Nevada Test Site[J]. Nature,1999,397(6714):56-59.
[5] Bin G,Cao X,Dong Y,et al. Colloid deposition and release in soils and their association with heavy metals[J]. Critical Reviews in Environmental Science and Technology,2011,41(4):336-372.
[6] 刘冠男,刘新会. 土壤胶体对重金属运移行为的影响[J]. 环境化学,2013,32(7):1307-1308. Liu G N,Liu X H. A review on the impact of soil colloids on heavy metal transport[J]. Environmental Chemistry,2013,32(7):1307-1308(in Chinese with English abstract).
[7] Kretzschmar R,Schafer T. Metal retention and transport on colloidal particles in the environment[J]. Elements,2005,1:205-210.
[8] Jiang C L,Séquaris J M,Vereecken H,et al. Effects of inorganic and organic anions on the stability of illite and quartz soil colloids in Na-,Ca-and mixed Na-Ca systems[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,415(12):134-141.
[9] Grolimund D,Borkovec M. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media:mathematical modeling and laboratory column experiments[J]. Environmental Science and Technology,2005,39(17):6378-6386.
[10] 郭娜,王金生,李剑,等. 2种四环素类抗生素在凹凸棒石黏土中的吸附研究[J]. 环境科学与技术,2015,38(3):81-85. Guo N,Wang J S,Li J,et al. Sorption study of two tetracycline antibiotics on attapulgite[J]. Environmental Science and Technology,2015,38(3):81-85(in Chinese with English abstract).
[11] 齐会勉,吕亮,乔显亮. 抗生素在土壤中的吸附行为研究进展[J]. 土壤,2009,41(5):703-708. Qi H M,Lü L,Qiao X L. Progress in sorption of antibiotics to soils[J]. Soils,2009,41(5):703-708(in Chinese with English abstract).
[12] 鲍陈燕,顾国平,徐秋桐,等. 施肥方式对蔬菜地土壤中8种抗生素残留的影响[J]. 农业资源与环境学报,2014,31(4):313-318. Bao C Y,Gu G P,Xu Q T,et al. Residues of eight antibiotics invegetable soils affected by fertilization methods[J]. Journal of Agricultural Resources and Environment,2014,31(4):313-318(in Chinese with English abstract).
[13] 罗凯,李文龙,章海波,等. 南京典型设施菜地有机肥和土壤中四环素类抗生素的污染特征调查[J]. 土壤,2014,46(2):330-338. Luo K,Li W L,Zhang H B,et al. Pollution characteristics of tetracycline ntibiotics in typical protected vegetable organic fertilizer of Nanjing City[J]. Soils,2014,46(2):330-338(in Chinese with English abstract).
[14] Huangfu X,Wang Y,Liu Y,et al. Effects of humic acid and surfactants on the aggregation kinetics of manganese dioxide colloids[J]. Frontiers of Environmental Science and Engineering,2015,9(1):105-111.
[15] Sangster J L,Oke H,Zhang Y,et al. The effect of particle size on sorption of estrogens,androgens and progestagens in aquatic sediment[J]. Journal of Hazardous Materials,2015,299:112-121.
[16] 胡家朋,吴代赦. Mn-Al双氢氧化物对氟离子的吸附热力学和动力学研究[J]. 硅酸盐通报,2015,34(4):1071-1077. Hu J P,Wu D S. Research on thermodynamic and dynamics for fluoride adsorption on Mn-Al double hydroxides[J]. Bulletin of the Chinese Ceramic Society,2015,34(4):1071-1077(in Chinese with English abstract).
[17] 茶丽娟,张迪,彭红波,等. 卡马西平在云南典型土壤上的吸附研究[J]. 昆明理工大学学报(自然科学版),2011,36(6):61-66. Cha L J,Zhang D,Peng H B,et al. Sorption of carbamazepine in Yunnan soils[J]. Journal of Kunming University of Science and Technology(Natural Science Edition),2011,36(6):61-66(in Chinese with English abstract).
[18] 章明奎,何振立,陈国潮,等. 利用方式对红壤水稳定性团聚体形成的影响[J]. 土壤学报,1997,34(4):359-366. Zhang M K,He Z L,Chen G C,et al. Effect of soil utilization on formation of stable soil water-stable aggregates[J]. Acta Pedologica Sinica,1997,34(4):359-366(in Chinese with English abstract).
[19] 马旭华,张一平,程素云,等. 不同施肥条件对土壤有机无机复合度的影响[J]. 中国土壤与肥料,1985(2):12-15. Ma X H,Zhang Y P,Cheng S Y,et al. Effects of different fertilization conditions on soil organic-inorganic complexity[J]. Chinese Soil and Fertilizer,1985(2):12-15(in Chinese).
[20] Kjaergaard C,Hansen H C B,Koch C B,et al. Properties of water-dispersible colloids from macropore deposits and bulk horizons of an agrudalf[J]. Soil Science Society of America Journal,2004,68(6):1844-1852.
[21] Czigány S,Flury M,Harsh J B. Colloid stability in vadose zone Hanford sediments[J]. Environmental Science and Technology,2005(39):1506-1512.
[22] Gupta R K,Bhumbla D K,Abrol I P. Effect of sdodicity,pH,organic matter,and calcium carbonate on the dispersion behavior of soils[J]. Soil Science,1984,137(4):245-251.
[23] Heil D,Sposito G. Organic matter role in illitic soil colloids flocculation:Ⅰ. Counter ions and pH[J]. Soil Science Society of America Journal,1993,57(5):1241-1246.
[24] McCarthy K A. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system[J]. Environmental Monitoring and Assessment,2006,118:293-318.
[25] Ho Y S,McKay G. Pseudo-second order model for sorption processes[J]. Process Biochemistry,1999,34:451-465.
[26] Qi Y,Zhang T C,Ren Y. Testosterone sorption and desorption:effects of soil particle size[J]. Journal of Hazardous Materials,2014,279:493-501.
[27] 李兆君,齐瑞环,龙健,等. 土壤粒度对土霉素在黑土和红壤上吸附的影响[J]. 农业环境科学学报,2010,29(12):2357-2362. Li Z J,Qi R H,Long J,et al. Influence of particle size on the adsorption of oxytetracycline on black soil and red soil[J]. Journal of Agro-Environment Science,2010,29(12):2357-2362(in Chinese with English abstract).
[28] Chen J S,Chiu C Y. Characterization of soil organic matter in different particle-size fractions in humid subalpine soils by CP/MAS 13C NMR[J]. Geoderma,2003,117(1/2):129-141.
[29] 黄昭先,黄健花,王兴国. 四环素在改性凹凸棒土中的吸附[J]. 非金属矿,2012,35(1):63-66. Huang Z X,Huang J H,Wang X G. Sorption of tetracycline on modified attapulgite[J]. Non-Metallic Mines,2012,35(1):63-66(in Chinese with English abstract).

相似文献/References:

[1]赵海燕,刘德辉,林江辉,等.施肥对丹参的生长及丹参素和原儿茶醛含量的影响[J].南京农业大学学报,2006,29(4):70.[doi:10.7685/j.issn.1000-2030.2006.04.015]
 ZHAO Hai-yan,LIU De-hui,LIN Jiang-hui,et al.Effect of fertilization on growth and contents of salvianic acid A and protocatechuic aldehyde of Salvia miltiorrhiza[J].Journal of Nanjing Agricultural University,2006,29(6):70.[doi:10.7685/j.issn.1000-2030.2006.04.015]
[2]赵吉坤,黄书君,邢蕾,等.秸秆覆盖下土壤耕作非线性动态过程研究[J].南京农业大学学报,2016,39(4):696.[doi:10.7685/jnau.201510011]
 ZHAO Jikun,HUANG Shujun,XING Lei,et al.Nonlinear dynamic process soil tillage under straw mulching model[J].Journal of Nanjing Agricultural University,2016,39(6):696.[doi:10.7685/jnau.201510011]
[3]卢毅,李保平,孟玲.氮肥和寄主龄期对斑痣悬茧蜂生长发育特征的影响[J].南京农业大学学报,2016,39(6):960.[doi:10.7685/jnau.201601024]
 LU Yi,LI Baoping,MENG Ling.Effects of nitrogen fertilization and host instar on developmental performance of the parasitoid Meteorus pulchricornis Wesmael(Hymenoptera: Braconidae)[J].Journal of Nanjing Agricultural University,2016,39(6):960.[doi:10.7685/jnau.201601024]

备注/Memo

备注/Memo:
收稿日期:2017-04-05。
基金项目:江苏省自然科学基金青年基金项目(BK20150682);江苏省环保科研课题(2015005)
作者简介:蔡天晋,硕士研究生。
通信作者:陈立伟,副教授,主要从事高浓度有机废水厌氧处理和化工废水生化处理的工程化应用研究及土壤污染治理研究,E-mail:clw@njau.edu.cn。
更新日期/Last Update: 1900-01-01