[1]张美祥.卵菌胞内效应子研究进展[J].南京农业大学学报,2018,41(1):18-25.[doi:10.7685/jnau.201706100]
 ZHANG Meixiang.Recent research progress on oomycete cytoplasmic effectors[J].Journal of Nanjing Agricultural University,2018,41(1):18-25.[doi:10.7685/jnau.201706100]
点击复制

卵菌胞内效应子研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年1期
页码:
18-25
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
Recent research progress on oomycete cytoplasmic effectors
作者:
张美祥
南京农业大学植物保护学院, 江苏 南京 210095
Author(s):
ZHANG Meixiang
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
关键词:
卵菌效应子植物免疫毒性机制
Keywords:
oomyceteeffectorplant immunityvirulence mechanism
分类号:
S432
DOI:
10.7685/jnau.201706100
摘要:
卵菌可引起毁灭性的植物病害,在侵染过程中分泌大量的胞内效应子进入植物细胞干扰寄主免疫反应。目前主要针对CRN(crinkling and necrosis protein)和RXLR(R:精氨酸;X:任意氨基酸;L:亮氨酸)两类胞内效应子进行了大量研究。近年来对这两类卵菌胞内效应子的研究进展迅速,极大地推动了我们对卵菌致病机制的认识。本文将从卵菌胞内效应子的进化、转运、功能和作用机制等方面对近年来的进展进行综述,并对今后的研究方向进行展望。
Abstract:
Oomycete pathogens can cause devastating plant diseases,and produce a large number of cytoplasmic effectors to suppress host plant immunity. Among these effecters,CRN(crinkling and necrosis protein) and RXLR(Arg-X-Leu-Arg,where X is any amino acid) have been extensively characterized. Significant progress has been made in recent years,which tremendously promoted our understanding of oomycete pathogenicity. Recent progresses on oomycete cytoplasmic effectors will be discussed in this review including effector evolution,translocation,function and functional mechanisms,and future research directions will also be discussed.

参考文献/References:

[1] Dou D L,Zhou J M. Phytopathogen effectors subverting host immunity:different foes,similar battleground[J]. Cell Host and Microbe,2012,12(4):484-495.
[2] Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[3] Judelson H S,Blanco F A. The spores of Phytophthora:weapons of the plant destroyer[J]. Nature Reviews Microbiology,2005,3(1):47-58.
[4] Tyler B M. Genetics and genomics of the oomycete-host interface[J]. Trends in Genetics,2001,17(11):611-614.
[5] Rizzo D M,Garbelotto M,Davidson J M,et al. Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California[J]. Plant Disease,2002,86(3):205-214.
[6] Hardham A R. Phytophthora cinnamomi[J]. Molecular Plant Pathology,2005,6(6):589-604.
[7] Kamoun S. A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annual Review of Phytopathology,2006,44:41-60.
[8] Govers F,Bouwmeester K. Effector trafficking:RXLR-dEER as extra gear for delivery into plant cells[J]. The Plant Cell,2008,20(7):1728-1730.
[9] Jiang R H Y,Tyler B M. Mechanisms and evolution of virulence in oomycetes[J]. Annual Review of Phytopathology,2012,50:295-318.
[10] Tyler B M,Tripathy S,Zhang X,et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis[J]. Science,2006,313(5791):1261-1266.
[11] Haas B J,Kamoun S,Zody M C,et al. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans[J]. Nature,2009,461(7262):393-398.
[12] Kemen E,Gardiner A,Schultz-Larsen T,et al. Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana[J]. PLoS Biology,2011,9(7):e1001094.
[13] Levesque C A,Brouwer H,Cano L,et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire[J]. Genome Biology,2010,11(7):R73.
[14] Kelley B S,Lee S J,Damasceno C M B,et al. A secreted effector protein(SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death[J]. The Plant Journal,2010,62(3):357-366.
[15] Liu T L,Song T Q,Zhang X,et al. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis[J]. Nature Communications,2014,5:4686.
[16] Links M G,Holub E,Jiang R H Y,et al. De novo sequence assembly of Albugo candida reveals a small genome relative to other biotrophic oomycetes[J]. BMC Genomics,2011,12:503.
[17] Jiang R H Y,Tripathy S,Govers F,et al. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(12):4874-4879.
[18] Lin K,Limpens E,Zhang Z H,et al. Single nucleus genome sequencing reveals high similarity among nuclei of an endomycorrhizal fungus[J]. PLoS Genetics,2014,10(1):e1004078.
[19] Sun G L,Yang Z F,Kosch T,et al. Evidence for acquisition of virulence effectors in pathogenic chytrids[J]. BMC Evolutionary Biology,2011,11:195.
[20] Raffaele S,Farrer R A,Cano L M,et al. Genome evolution following host jumps in the Irish potato famine pathogen lineage[J]. Science,2010,330(6010):1540-1543.
[21] Shen D Y,Liu T L,Ye W W,et al. Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae[J]. PLoS ONE,2013,8(7):e70036.
[22] Goss E M,Press C M,Grunwald N J. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum[J]. PLoS ONE,2013,8(11):e79347.
[23] Wang Q Q,Han C Z,Ferreira A O,et al. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire[J]. The Plant cell,2011,23(6):2064-2086.
[24] Ye W W,Wang X L,Tao K,et al. Digital gene expression profiling of the Phytophthora sojae transcriptome[J]. Molecular Plant-Microbe Interactions,2011,24(12):1530-1539.
[25] Vetukuri R R,Åsman A K M,Tellgren-Roth C,et al. Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans[J]. PLoS ONE,2012,7(12):e51399.
[26] Jupe J,Stam R,Howden A J M,et al. Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle[J]. Genome Biology,2013,14(6):R63.
[27] Stam R,Jupe J,Howden A J M,et al. Identification and characterisation CRN effectors in Phytophthora capsici shows modularity and functional diversity[J]. PLoS ONE,2013,8(3):e59517.
[28] Khang C H,Berruyer R,Giraldo M C,et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement[J]. The Plant Cell,2010,22(4):1388-1403.
[29] Bhattacharjee S,Hiller N L,Liolios K,et al. The malarial host-targeting signal is conserved in the Irish potato famine pathogen[J]. PLoS Pathogens,2006,2(5):e50.
[30] Dou D L,Kale S D,Wang X,et al. RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery[J]. The Plant Cell,2008,20(7):1930-1947.
[31] Kale S D,Gu B,Capelluto D G S,et al. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells[J]. Cell,2010,142(6):284-295.
[32] Lu S,Chen L L,Tao K,et al. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection[J]. Molecular Plant,2013,6(5):1592-1604.
[33] Tyler B M,Kale S D,Wang Q Q,et al. Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible[J]. Molecular Plant-Microbe Interactions,2013,26(6):611-616.
[34] Ellis J G,Dodds P N. Showdown at the RXLR motif:serious differences of opinion in how effector proteins from filamentous eukaryotic pathogens enter plant cells[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(35):14381-14382.
[35] Yaeno T,Li H,Chaparro-Garcia A,et al. Phosphatidylinositol monophosphate-binding interface in the oomycete RXLR effector AVR3a is required for its stability in host cells to modulate plant immunity[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(35):14682-14687.
[36] Wawra S,Bain J,Durward E,et al. Host-targeting protein 1(SpH tp1) from the comycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner[J]. Proceedings of the National Academy of Sciences of the United States of America,2012,109(6):2096-2101.
[37] Marin M,Uversky V N,Ott T. Intrinsic disorder in pathogen effectors:protein flexibility as an evolutionary hallmark in a molecular arms race[J]. The Plant Cell,2013,25(9):3153-3157.
[38] Schornack S,van Damme M,Bozkurt T O,et al. Ancient class of translocated oomycete effectors targets the host nucleus[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(40):17421-17426.
[39] Caillaud M C,Piquerez S J M,Fabro G,et al. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility[J]. The Plant Journal,2012,69(2):252-265.
[40] Yu X L,Tang J L,Wang Q Q,et al. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death[J]. New Phytology,2012,196(1):247-260.
[41] Bozkurt T O,Schornack S,Win J,et al. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface[J]. Proceedings of the National Academy of Sciences of the United States of America,2011,108(51):20832-20837.
[42] Stam R,Howden A J M,Delgado-Cerezo M,et al. Characterization of cell death inducing Phytophthora capsici CRN effectors suggests diverse activities in the host nucleus[J]. Frontiers in Plant Science,2013,4:387.
[43] Liu T L,Ye W W,Ru Y Y,et al. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses[J]. Plant Physiology,2011,155(1):490-501.
[44] Mafurah J J,Ma H F,Zhang M X,et al. A virulence essential CRN effector of Phytophthora capsici suppresses host defense and induces cell death in plant nucleus[J]. PLoS ONE,2015,10(5):e0127965.
[45] Rehmany A P,Gordon A,Rose L E,et al. Differential recognition of highly divergent downy mildew avirulence gene alleles by RPP1 resistance genes from two Arabidopsis lines[J]. The Plant Cell,2005,17(6):1839-1850.
[46] Steinbrenner A D,Goritschnig S,Staskawicz B J. Recognition and activation domains contribute to allele-specific responses of an Arabidopsis NLR receptor to an oomycete effector protein[J]. PLoS Pathogens,2015,11(2):e1004665.
[47] Saunders D G O,Breen S,Win J,et al. Host protein BSL1 associates with Phytophthora infestans RXLR effector AVR2 and the Solanum demissum immune receptor R2 to mediate disease resistance[J]. The Plant Cell,2012,24(8):3420-3434.
[48] Du Y,Mpina M H,Birch P R J,et al. Phytophthora infestans RXLR effector AVR1 interacts with exocyst component Sec5 to manipulate plant immunity[J]. Plant Physiology,2015,169(3):1975-1990.
[49] Engelhardt S,Boevink P C,Armstrong M R,et al. Relocalization of late blight resistance protein R3a to endosomal compartments is associated with effector recognition and required for the immune response[J]. The Plant Cell,2012,24(12):5142-5158.
[50] Anderson R G,Deb D,Fedkenheuer K,et al. Recent progress in RXLR effector research[J]. Molecular Plant-Microbe Interactions,2015,28(10):1063-1072.
[51] Bos J I B,Kanneganti T D,Young C,et al. The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana[J]. The Plant Journal,2006,48(2):165-176.
[52] Zheng X Z,McLellan H,Fraiture M,et al. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity[J]. PLoS Pathogens,2014,10(4):e1004057.
[53] Fabro G,Steinbrenner J,Coates M,et al. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity[J]. PLoS Pathogens,2011,7(11):e1002348.
[54] Chen Y,Liu Z Y,Halterman D A. Molecular determinants of resistance activation and suppression by Phytophthora infestans effector IPI-O[J]. PLoS Pathogens,2012,8(3):e1002595.
[55] Dong S M,Yin W X,Kong G H,et al. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity[J]. PLoS Pathogens,2011,7(11):e1002353.
[56] Kong G H,Zhao Y,Jing M F,et al. The activation of Phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b[J]. PLoS Pathogens,2015,11(8):e1005139.
[57] van Damme M,Bozkurt T O,Cakir C,et al. The Irish potato famine pathogen Phytophthora infestans translocates the CRN8 kinase into host plant cells[J]. PLoS Pathogens,2012,8(8):e1002875.
[58] Yang L N,McLellan H,Naqvi S,et al. Potato NPH3/RPT2-like protein StNRL1,targeted by a Phytophthora infestans RXLR effector,is a susceptibility factor[J]. Plant Physiology,2016,171(1):645-657.
[59] Bos J I B,Armstrong M R,Gilroy E M,et al. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(21):9909-9914.
[60] King S R F,McLellan H,Boevink P C,et al. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK epsilon to suppress plant immune signaling[J]. The Plant Cell,2014,26(3):1345-1359.
[61] Dagdas Y F,Belhaj K,Maqbool A,et al. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor[J]. eLIFE,2016,5:e10856.
[62] Qiao Y L,Liu L,Xiong Q,et al. Oomycete pathogens encode RNA silencing suppressors[J]. Nature Genetics,2013,45(3):330-333.
[63] Xiong Q,Ye W W,Choi D,et al. Phytophthora suppressor of RNA silencing 2 is a conserved RxLR effector that promotes infection in soybean and Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions,2014,27(12):1379-1389.
[64] Qiao Y L,Shi J X,Zhai Y,et al. Phytophthora effector targets a novel component of small RNA pathway in plants to promote infection[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(18):5850-5855.
[65] Evangelisti E,Govetto B,Minet-Kebdani N,et al. The Phytophthora parasitica RXLR effector Penetration-Specific Effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology[J]. New Phytologist,2013,199(2):476-489.
[66] Jing M F,Guo B D,Li H Y,et al. A Phytophthora sojae effector suppresses endoplasmic reticulum stress-mediated immunity by stabilizing plant binding immunoglobulin proteins[J]. Nature Communications,2016,7:11685.
[67] Boevink P C,Wang X D,McLellan H,et al. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease[J]. Nature Communications,2016,7:10311.
[68] McLellan H,Boevink P C,Armstrong M R,et al. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus[J]. PLoS Pathogens,2013,9(10):e1003670.
[69] Zhang M X,Li Q,Liu T L,et al. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases[J]. Plant Physiology,2015,167(1):164-175.
[70] Song T Q,Ma Z C,Shen D Y,et al. An oomycete CRN effector reprograms expression of plant HSP genes by targeting their promoters[J]. PLoS Pathogens,2015,11(12):e1005348.

相似文献/References:

[1]王源超.诱饵模式——病原菌致病的全新机制[J].南京农业大学学报,2018,41(1):1.[doi:10.7685/jnau.201801100]
 WANG Yuanchao.A new paradigm in plant-pathogen interactions:pathogen evolved a paralogous decoy to shield the virulence factor from host inhibition[J].Journal of Nanjing Agricultural University,2018,41(1):1.[doi:10.7685/jnau.201801100]

备注/Memo

备注/Memo:
收稿日期:2017-06-07。
基金项目:国家自然科学基金项目(31672008)
作者简介:张美祥,副教授,主要从事植物与疫霉互作研究,E-mail:meixiangzhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01