[1]于东立,宋晓欧,鲍亚林,等.通过定量蛋白组学研究OsGLO1对稻瘟病抗性的调控机制[J].南京农业大学学报,2018,41(1):71-78.[doi:10.7685/jnau.201703039]
 YU Dongli,SONG Xiaoou,BAO Yalin,et al.A quantitative proteomic study of the OsGLO1-mediated resistance against the rice blast disease[J].Journal of Nanjing Agricultural University,2018,41(1):71-78.[doi:10.7685/jnau.201703039]
点击复制

通过定量蛋白组学研究OsGLO1对稻瘟病抗性的调控机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年1期
页码:
71-78
栏目:
出版日期:
2018-01-15

文章信息/Info

Title:
A quantitative proteomic study of the OsGLO1-mediated resistance against the rice blast disease
作者:
于东立 宋晓欧 鲍亚林 林思远 王建升 王秀娟 卢唯 赵弘巍
南京农业大学植物保护学院, 江苏 南京 210095
Author(s):
YU Dongli SONG Xiao’ou BAO Yalin LIN Siyuan WANG Jiansheng WANG Xiujuan LU Wei ZHAO Hongwei
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
关键词:
定量蛋白组学稻瘟病抗病性葡糖酸氧化酶过氧化氢植物激素
Keywords:
quantitative proteomicsrice blastdisease resistanceglycolate-oxidasehydrogen peroxidephytohormone
分类号:
Q945.8
DOI:
10.7685/jnau.201703039
摘要:
[目的]水稻葡糖酸氧化酶1(OsGLO1)定位于水稻过氧化物酶体(peroxisome),参与过氧化氢的产生,但其是否参与水稻对稻瘟病抗性的调控还未见报道。本研究的目的是为了考察OsGLO1在水稻对稻瘟病抗性中的作用。[方法]以水稻‘日本晴’和稻瘟病病菌互作体系为研究对象,使用定量蛋白质组学技术,比较和分析了亲和型和非亲和型稻瘟病菌菌株侵染引起的水稻蛋白质表达变化。[结果]研究发现水稻OsGLO1蛋白的表达受到亲和型稻瘟病菌侵染的特异性抑制,但是在非亲和反应中的表达量变化则不明显。水稻原生质体过表达和沉默试验证明,OsGLO1的表达与水稻活性氧积累以及胼胝质沉积量呈正相关,且OsGLO1过表达诱发水杨酸(SA)和茉莉酸(JA)等多种防卫信号通路相关基因的表达。[结论]OsGLO1可以激活水稻的早期防卫反应,并通过启动多种激素信号通路维持水稻对稻瘟病一定水平的抗性。考虑到其也参与植物对非生物胁迫抗性的调控,提示OsGLO1可能是水稻抵抗生物胁迫以及非生物胁迫中的重要因子。
Abstract:
[Objectives]OsGLO1(glycolate-oxidase 1) is a peroxisome-localized enzyme catalyzing hydrogen peroxide(H2O2) production. However,it remains uninvestigated whether OsGLO1 contributes to the rice defense response. Therefore,it is of great significance studying the involvement of OsGLO1 in rice defense against the blast disease,the most severe rice disease worldwide. [Methods]We compared and analyzed the rice protein expression profiles between the rice leaves inoculated by a Magnaporthe oryzae compatible(Guy11) and an incompatible strain(2539) with the mock-treated rice leaves through a quantitative proteomic approach. [Results]We found that OsGLO1 was specifically suppressed by the compatible rice blast strain but not by the incompatible strain. Guy11 is a virulent strain that causes noticeable disease symptoms on rice,whereas strain 2539 is an avirulent strain that is moderately pathogenic to many rice genotypes. Therefore,the suppressed OsGLO1 expression by Guy11 and the declined disease resistance after Guy11 infection associate OsGLO1 with blast disease resistance. By employing a rice protoplast-M. oryzae elicitor interaction system,we confirmed that the expression of OsGLO1 was positively related to rice early defense responses such as reactive oxygen species(ROS) accumulation and callose deposition. Moreover,cognate expression profiles were also observed between OsGLO1 and multiple defense signaling pathway components such as OsPBZ1,OsPAD4 and OsAOS2. [Conclusions]Our results suggest that OsGLO1 is a defense component involved in disease response against rice blast,in which multiple phytohormone signaling pathway are employed. Our study is the first case study that OsGLO1 is a critical component against rice blast disease. Considering its involvement in abiotic stress tolerance,our discovery is of great significance revealing that OsGLO1 might play mutual roles against both abiotic and biotic stresses.

参考文献/References:

[1] Kaurilind E,Xu E,Brosche M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana[J]. BMC Genomics,2015,16:837.
[2] Moller I M,Jensen P E,Hansson A. Oxidative modifications to cellular components in plants[J]. Annual Review of Plant Biology,2007,58:459-481.
[3] Pavet V,Olmos E,Kiddle G,et al. Ascorbic acid deficiency activates cell death and disease resistance responses in Arabidopsis[J]. Plant Physiology,2005,139(3):1291-1303.
[4] Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[5] Matin M N,Pandeya D,Baek K-H,et al. Phenotypic and genotypic analysis of rice lesion mimic mutants[J]. Plant Pathology Journal,2010,26(2):159-169.
[6] Chaouch S,Queval G,Vanderauwera S,et al. Peroxisomal hydrogen peroxide is coupled to biotic defense responses by ISOCHORISMATE SYNTHASE1 in a daylength-related manner[J]. Plant Physiology,2010,153(4):1692-1705.
[7] Zhang Z,Xu Y,Xie Z,et al. Association-dissociation of glycolate oxidase with catalase in rice:a potential switch to modulate intracellular H2O2 levels[J]. Molecular Plant,2016,9(5):737-748.
[8] Zhang H,Xue C,Kong L,et al. A Pmk1-interacting gene is involved in sppressorium fifferentiation and plant infection in Magnaporthe oryzae[J]. Eukaryotic Cell,2011,10(8):1062-1070.
[9] Boersema P J,Raijmakers R,Lemeer S,et al. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics[J]. Nature Protocols,2009,4(4):484-494.
[10] Kovanich D,Cappadona S,Raijmakers R,et al. Applications of stable isotope dimethyl labeling in quantitative proteomics[J]. Analytical and Bioanalytical Chemistry,2012,404(4):991-1009.
[11] Bart R,Chern M,Park C J,et al. A novel system for gene silencing using siRNAs in rice leaf and stem-derived protoplasts[J]. Plant Methods,2006,2:13.
[12] Forlani G,Occhipinti A,Bossi S,et al. Magnaporthe oryzae cell wall hydrolysate induces ROS and fungistatic VOCs in rice cell cultures[J]. Journal of Plant Physiology,2011,168(17):2041-2047.
[13] Khokon M A R,Okuma E,Hossain M A,et al. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis[J]. Plant Cell and Environment,2011,34(3):434-443.
[14] Luna E,Pastor V,Robert J,et al. Callose deposition:a multifaceted plant defense response[J]. Molecular Plant-Microbe Interactions,2011,24(2):183-193.
[15] Noctor G,Veljovic-Jovanovic S,Driscoll S,et al. Drought and oxidative load in the leaves of C-3 plants:a predominant role for photorespiration?[J]. Annals of Botany,2002,89:841-850.
[16] Torres M A,Dangl J L. Functions of the respiratory burst oxidase in biotic interactions,abiotic stress and development[J]. Current Opinion in Plant Biology,2005,8(4):397-403.
[17] Zhang Z,Lu Y,Zhai L,et al. Glycolate oxidase isozymes are coordinately controlled by GLO1 and GLO4 in rice[J]. PloS ONE,2012,7(6):e39658.
[18] Rojas C M,Senthil-Kumar M,Wang K,et al. Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in nicotiana benthamiana and Arabidopsis[J]. Plant Cell,2012,24(1):336-352.
[19] Mei C,Qi M,Sheng G,et al. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level,PR gene expression,and host resistance to fungal infection[J]. Molecular Plant-Microbe Interactions,2006,19(10):1127-1137.
[20] Jirage D,Tootle T L,Reuber T L,et al. Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling[J]. Proc Natl Acad Sci USA,1999,96(23):13583-13588.
[21] Ke Y,Liu H,Li X,et al. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions[J]. Plant Journal,2014,78(4):619-631.

相似文献/References:

[1]杨荣明,周明国,叶钟音.三环唑防治稻瘟病的作用机制[J].南京农业大学学报,1998,21(2):34.[doi:10.7685/j.issn.1000-2030.1998.02.007]
 Yang Rongming,Zhou Mingguo,Ye Zhongyin.Action mode of tricyclazole against rice blast[J].Journal of Nanjing Agricultural University,1998,21(1):34.[doi:10.7685/j.issn.1000-2030.1998.02.007]
[2]Khallaf Abdullah,唐正合,王建新,等.江苏省水稻品种抗稻瘟病基因型的鉴定与分析[J].南京农业大学学报,2011,34(6):65.[doi:10.7685/j.issn.1000-2030.2011.06.012]
 Khallaf Abdullah,TANG Zheng-he,WANG Jian-xin,et al.Identification and analysis of resistant genotypes of rice varieties to Magnaporthe grisea in Jiangsu Province[J].Journal of Nanjing Agricultural University,2011,34(1):65.[doi:10.7685/j.issn.1000-2030.2011.06.012]

备注/Memo

备注/Memo:
收稿日期:2017-03-27。
基金项目:教育部高等学校博士点基金项目(B0201300664);江苏省自然科学基金项目(BK20141360);中央高校基本科研业务费重点项目(KYTZ201403)
作者简介:于东立,硕士研究生。
通信作者:赵弘巍,教授,博导,主要从事非编码RNA在植物抗病性中作用的研究,E-mail:hzhao@njau.edu.cn。
更新日期/Last Update: 1900-01-01