LIU Ziwen,HU Manman,WANG Zhiyuan,et al.Physicochemical properties and gene mapping of white-core mutant whc in rice[J].Journal of Nanjing Agricultural University,2018,41(2):231-239.[doi:10.7685/jnau.201706007]





Physicochemical properties and gene mapping of white-core mutant whc in rice
刘子文 胡曼曼 王致远 张瑜竣 谷晗 游佳 王益华 江玲 刘玲珑
南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程技术研究中心, 江苏 南京 210095
LIU Ziwen HU Manman WANG Zhiyuan ZHANG Yujun GU Han YOU Jia WANG Yihua JIANG Ling LIU Linglong
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
ricewhite core(whc) mutantstarchphysicochemical propertiesgene mapping
[目的]淀粉约占水稻胚乳干物质总量的80%,胚乳中淀粉的组分与含量以及颗粒结构对稻米品质具有重要影响。因此,阐明水稻淀粉合成的分子机制对品质改良具有重要意义。[方法]通过60Co-γ辐照诱变粳稻品种‘中花11’(ZH11),得到1个稳定遗传的胚乳心白突变体white corewhc)。对该突变体的形态学特征、理化性质、淀粉结构等性状进行了分析,并对突变体whc和‘N22’杂交配制的F2群体进行基因定位。[结果]与野生型相比,该突变体表现为胚乳中心粉质不透明,粒宽与有效穗数增加,千粒质量下降14.5%。whc突变体成熟种子的直链淀粉含量减少24.7%,而总蛋白含量变化不明显。胚乳横截面扫描电镜分析发现,突变体whc的粉质胚乳部位淀粉粒异常。挑选极端单株将whc精细定位在Chr 4染色体长臂的RM349和d1分子标记之间,物理距离为158 kb。测序发现whc突变体中1个编码三角状四肽重复结构域蛋白[tetratricopeptide repeat(TPR)domain containing protein]的基因发生点突变,导致蛋白翻译提前终止。qRT-PCR分析显示,whc突变体中编码AGPase各亚基以及部分淀粉合酶的相关基因表达量发生改变。[结论]水稻心白突变体whc的表型可能是由1个编码TPR蛋白结构域的基因控制。
[Objectives]Starch accounts for about 80% of the total dry matter content of rice endosperm,and composition and content of starch as well as starch granule structure in the endosperm have important influence on the rice quality. Therefore,it is important to clarify the molecular mechanism of starch synthesis in rice. [Methods]A stable white core endosperm mutant (whc) was obtained by mutagenesis of 60Co-γ in a japonica rice variety ‘Zhonghua 11’(ZH11) background. Analysis of phenotypic traits,physicochemical properties,and starch structure was carried out. Further,genetic linkage analysis was performed using an F2 population derived from whc and ‘N22’ cross. [Results]Compared to the wild type,the mutant showed floury and opaque in the center of endosperm. In contrast to the increased grain width and effective panicle number,the whc had 14.5% less 1 000-grain weight than its wild type. Meanwhile,the amylose content in the mature seeds of the whc was 24.7% decreased,whereas the total protein content showed no significant difference. Scanning electron microscopy analysis of endosperm cross section showed that starch granules in the floury part of the mutant were abnormal,relative to its wild type. The extreme individual was selected and the whc locus was delimited between the RM349 and d1 molecular markers on the long arm of chromosome 4,with a physical distance of 158 kb. Sequence analysis revealed that coding region of a tetratricopeptide repeat(TPR) domain protein had a single nucleotide substitution,leading to premature termination of protein translation. Quantitative RT-PCR indicated that expression levels of genes encoding the AGPase subunits and other starch synthesis-related enzymes in the whc mutant endosperm had changed. [Conclusions]The phenotype of the whc was likely controlled by the gene encoding a TPR domain containing protein.


[1] 方鹏飞,李三峰,焦桂爱,等. 水稻粉质胚乳突变体flo7的理化性质及基因定位[J]. 中国水稻科学,2014,28(5):447-457. Fang P F,Li S F,Jiao G A,et al. Physicochemical property analysis and gene mapping of a floury endosperm mutant flo7 in rice[J]. Chinese Journal of Rice Science,2014,28(5):447-457(in Chinese with English abstract).
[2] Giroux M J,Boyer C,Feix G,et al. Coordinated transcriptional regulation of storage product genes in the maize endosperm[J]. Plant Physiol,1994,106(2):713-722.
[3] Shewry P R,Napier J A,Tatham A S. Seed storage proteins:structures and biosynthesis[J]. Plant Cell,1995,7(7):945-956.
[4] Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants:rice endosperm as a model tissue[J]. Plant Cell Physiol,2002,43(7):718-725.
[5] James M G,Denyer K,Myers A M. Starch synthesis in the cereal endosperm[J]. Curr Opin Plant Biol,2003,6(3):215-222.
[6] Buléon A,Colonna P,Planchot V,et al. Starch granules:structure and biosynthesis[J]. Int J Biol Macromol,1998,23(2):85-112.
[7] Kubo A,Fujita N,Harada K,et al. The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm[J]. Plant Physiol,1999,121(2):399-409.
[8] Nishi A,Nakamura Y,Tanaka N,et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm[J]. Plant Physiol,2001,127(2):459-472.
[9] Fujita N,Kubo A,Suh D S,et al. Antisense inhibition of isoamylase alters the structure of amylopectin and the physicochemical properties of starch in rice endosperm[J]. Plant Cell Physiol,2003,44(6):607-618.
[10] Hirose T,Terao T. A comprehensive expression analysis of the starch synthase gene family in rice(Oryza sativa L.)[J]. Planta,2004,220(1):9-16.
[11] Kawagoe Y,Kubo A,Satoh H,et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm[J]. Plant J,2005,42(2):164-174.
[12] Woo M O,Ham T H,Ji H S,et al. Inactivation of the UGPase1 gene causes genic male sterility and endosperm chalkiness in rice(Oryza sativa L.)[J]. Plant J,2008,54(2):190-204.
[13] Kawasaki T,Mizuno K,Baba T,et al. Molecular analysis of the gene encoding a rice starch branching enzyme[J]. Mol Gen Genet,1993,237(1/2):10-16.
[14] Satoh H,Omura T. New endosperm mutations induced by chemical mutagens in rice(Oryza sativa L.)[J]. Jpn J Breeding,1981,31(3):316-326.
[15] She K C,Kusano H,Koizumi K,et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality[J]. Plant Cell,2010,22(10):3280-3294.
[16] Nishio T,Iida S. Mutants having a low content of 16-kDa allergenic protein in rice(Oryza sativa L.)[J]. Theor Appl Genet,1993,86(2):317-321.
[17] Kang H G,Park S,Matsuoka M,et al. White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C4-type pyruvate orthophosphate dikinase gene(OsPPDKB)[J]. Plant J,2005,42(6):901-911.
[18] Ryoo N,Yu C,Park C S,et al. Knockout of a starch synthase gene OsSSⅢa/Flo5 causes white-core floury endosperm in rice(Oryza sativa L.)[J]. Plant Cell Rep,2007,26(7):1083-1095.
[19] Fujita N,Yoshida M,Kondo T,et al. Characterization of SSⅢa-deficient mutants of rice:the function of SSⅢa and pleiotropic effects by SSⅢa deficiency in the rice endosperm[J]. Plant Physiol,2007,144(4):2009-2023.
[20] Peng C,Wang Y H,Liu F,et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm[J]. Plant J,2014,77(6):917-930.
[21] Zhang L,Ren Y L,Lu B Y,et al. FLOURY ENDOSPERM7 encodes a regulator of starch synthesis and amyloplast development essential for peripheral endosperm development in rice[J]. J Exp Bot,2016,67(3):633-647.
[22] 中华人民共和国农业部发布. 米质测定方法:NY 147-1988[S]. 北京:中国标准出版社,2002. The Ministry of Agriculture of the People’s Republic of China. Determination of quality of rice:NY 147-1988[S]. Beijing:China Standard Press,2002(in Chinese).
[23] 孙成效,段彬伍,谢黎虹,等. 利用近红外透射光谱技术同步测定糙米的多项品质指标初报[J]. 中国水稻科学,2006,20(4):451-454. Sun C X,Duan B W,Xie L H,et al. Determination of several quality characters of brown rice by near infrared transmission spectroscopy[J]. Chinese Journal of Rice Science,2006,20(4):451-454(in Chinese with English abstract).
[24] 康海岐,常红叶. 杂交水稻主要亲本材料的垩白性状及其胚乳结构电镜扫描[J]. 中国农学通报,2007,23(4):180-185. Kang H Q,Chang H Y. Study on chalkiness characters and endosperm structures of the main parents’ kernel of hybrid rice[J]. Chinese Agricultural Science Bulletin,2007,23(4):180-185(in Chinese with English abstract).
[25] Wu K S,Tanksley S D. Abundance,polymorphism and genetic mapping of microsatellites in rice[J]. Mol Gen Genet,1993,241(1):225-235.
[26] Ohdan T,Francisco P B,Jr,Sawada T,et al. Expression profiling of genes involved in starch synthesis in sink and source organs of rice[J]. J Exp Bot,2005,56(422):3229-3244.
[27] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[28] 金田蕴,李辉,郭涛,等. 水稻稳定高垩白率突变体的获得与理化特性分析[J]. 作物学报,2010,36(1):121-132. Jing T Y,Li H,Guo T,et al. Analysis of physiological and biochemical characteristics of six mutants with stable high percentage of chalkiness in rice grains[J]. Acta Agronomica Sinica,2010,36(1):121-132(in Chinese with English abstract).
[29] Sabelli P A,Larkins B A. The development of endosperm in grasses[J]. Plant Physiol,2009,149(1):14-26.
[30] Wu Y P,Pu C H,Lin H Y,et al. Three novel alleles of FLOURY ENDOSPERM2(FLO2)confer dull grains with low amylose content in rice[J]. Plant Sci,2015,233:44-52.
[31] Nakamura Y,Utsumi Y,Sawada T,et al. Characterization of the reactions of starch branching enzymes from rice endosperm[J]. Plant Cell Physiol,2010,51(5):776-794.
[32] D’Andrea L D,Regan L. TPR proteins:the versatile helix[J]. Trends Biochem Sci,2003,28(12):655-662.
[33] Chadli A,Bruinsma E S,Stensgard B,et al. Analysis of Hsp90 cochaperone interactions reveals a novel mechanism for TPR protein recognition[J]. Biochemistry,2008,47(9):2850-2857.


 ZHANG Chen-ming,XU Ye-hong,ZHAO Hai-juan,et al.Effects of different nitrogen forms on nitrogen uptake and root growth of rice at the seedling stage[J].Journal of Nanjing Agricultural University,2011,34(2):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
 HAO Wen-ya,SHEN Qi-rong,RAN Wei,et al.The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f.sp. niveum[J].Journal of Nanjing Agricultural University,2011,34(2):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
 XU Xiao-sa,LIU Xi,ZHAO Zhi-gang,et al.Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S/93-11 and detection of QTL for 1000-grain weight[J].Journal of Nanjing Agricultural University,2011,34(2):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
 WEI Guang-bin,XU Hai-gang,DING Yan-feng,et al.Development and realization of the rice design cultivation system[J].Journal of Nanjing Agricultural University,2011,34(2):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
 LI Gang-hua,WANG Hui-zhi,WANG Shao-hua,et al.Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
 WANG Bi-qian,FAN Xiao-rong,XU Guo-hua,et al.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
 ZHAO Cheng-guo,XU Hai-gang,LI Gang-hua,et al.Studies on population composition of super-high-yielding single-cropping japonica rice in heading stage[J].Journal of Nanjing Agricultural University,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
 CHEN Zhi-de,ZHONG Wei-gong,WANG Jun,et al.Mapping of QTL of tolerance to Cd^{2+} stress at seedling stage in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
 YE Li-ting,FAN Jian-bo,XU Ye-hong,et al.Characteristics of growth in rice genotypes with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
 JIN Yu-kuan,YANG Shi-hu,YU Li,et al.Expression and resistance analysis of the Pib gene in transgenic rice under different promoters[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]


更新日期/Last Update: 1900-01-01