[1]张飞雪,虞章红,刘坤宇,等.不结球白菜醛酮还原酶BcAKR4C9基因的克隆及表达分析[J].南京农业大学学报,2018,41(2):240-247.[doi:10.7685/jnau.201705022]
 ZHANG Feixue,YU Zhanghong,LIU Kunyu,et al.Cloning and expression analysis of aldo-keto reductase gene BcAKR4C9 from non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2018,41(2):240-247.[doi:10.7685/jnau.201705022]
点击复制

不结球白菜醛酮还原酶BcAKR4C9基因的克隆及表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年2期
页码:
240-247
栏目:
出版日期:
2018-03-27

文章信息/Info

Title:
Cloning and expression analysis of aldo-keto reductase gene BcAKR4C9 from non-heading Chinese cabbage
作者:
张飞雪 虞章红 刘坤宇 文锴 王建军 侯喜林 李英
南京农业大学园艺学院/作物遗传与种质创新国家重点实验室/农业部华东地区园艺作物生物学 与种质创新重点实验室, 江苏 南京 210095
Author(s):
ZHANG Feixue YU Zhanghong LIU Kunyu WEN Kai WANG Jianjun HOU Xilin LI Ying
College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Chi
关键词:
不结球白菜醛酮还原酶AKR4C亚家族序列分析非生物胁迫
Keywords:
non-heading Chinese cabbagealdo-keto reductase AKR4C subfamilysequence analysisabiotic stress
分类号:
S634.3
DOI:
10.7685/jnau.201705022
摘要:
[目的]本文旨在探究醛酮还原酶AKR4C亚家族BcAKR4C9基因在不同激素处理及逆境胁迫中的表达模式,从而分析BcAKR4C9基因在不结球白菜作物中的生长代谢和逆境胁迫中可能发挥的作用。[方法]以不结球白菜‘苏州青’为材料,克隆了BcAKR4C9基因的全长,应用生物信息学分析了其氨基酸序列,并通过实时荧光定量PCR技术分析BcAKR4C9基因在不同组织,高温、低温、NaCl胁迫、伤害胁迫,以及水杨酸、茉莉酸甲酯和脱落酸等处理下的基因表达变化。[结果]序列分析表明,BcAKR4C9基因包含1个长度为948 bp的开放式阅读框(ORF),编码315个氨基酸。氨基酸序列多重比对和进化树分析表明,BcAKR4C9与其他植物AKR4C9基因同源性较高,具有高度保守性。荧光定量PCR分析表明,BcAKR4C9在叶片中的表达量高于根中,高温和低温处理下表达上调,且具有相似的表达模式。在0~20 g·L-1NaCl质量浓度范围内基因相对表达量随NaCl质量浓度的升高而升高,伤害处理后能够迅速产生应激响应,并能够被水杨酸、茉莉酸甲酯和脱落酸诱导表达。[结论]不结球白菜BcAKR4C9基因能够被不同激素诱导表达,并且参与到多种逆境胁迫响应。
Abstract:
[Objectives]The purpose of this study was to explore the expression pattern of BcAKR4C9 gene of AKR4C subfamily under different hormone treatments and stress conditions,so as to analyze the possible role of BcAKR4C9 gene in growth development and stress in non-heading Chinese cabbage. [Methods]The whole cDNA sequence BcAKR4C9 gene was cloned from non-heading Chinese cabbage ‘Suzhouqing’,and its amino acid sequence was analyzed by bioinformatics,and real-time fluorescence quantitative PCR technology was used to explore its expression pattern under different tissues,different stress conditions(high temperature,low temperature,NaCl stress,wound stress) and different hormone treatments(salicylic acid,methyl jasmonate and abscisic acid). [Results]The sequence analysis showed that the BcAKR4C9 gene contained an open reading frame(ORF) with a length of 948 bp,encoding 315 amino acids. The amino acid sequence multiple alignment and mapping phylogenetic tree showed that BcAKR4C9 gene was highly homologous to the AKR4C9 genes from other plants and highly conserved. Real-time fluorescence quantitative PCR analysis showed that the expression of BcAKR4C9 gene in the leaves was higher than that in the roots,and it was up-regulated at high temperature and low temperature and had similar expression patterns. Its expression increased with the increase of salt concentration from 0 to 20 g·L-1. The expression of BcAKR4C9 also could be induced by salicylic acid,methyl jasmonate and abscisic acid. [Conclusions]The non-heading Chinese cabbage BcAKR4C9 gene can be induced by different hormones and is involved in a variety of stress responses.

参考文献/References:

[1] Mittler R. Oxidative stress,antioxidants andstress tolerance[J]. Trends in Plant Science,2002,9(7):405-410.
[2] Pogány M,Pintye A,Simoneau P,et al. Dual roles ofreactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem[J]. Plant Physiology,2009,151:1459-1475.
[3] Simpson P J,Anna M C T,Owen C R,et al. Characterization of two novel aldo-keto reductases from Arabidopsis:expression patterns,broad substrate specificity,and an open active-site structure suggest a role in toxicant metabolism following stress[J]. Journal of Molecular Biology,2009,392:465-480.
[4] Karuna S B,Rajendrakumar C S V,Reddy A R. Aldose reductase in rice(Oryza sativa L.):stress response and developmental specificity[J]. Plant Science,2000,160:149-157.
[5] Gavidia I,Pérez-Bermúdez P,Seitz H U. Cloning and expression of two novel aldo-keto reductases from Digitalis purpurea leaves[J]. European Journal of Biochemistry,2002,269:2842-2850.
[6] Oberschall A,Deák K M,Török L,et al. A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses[J]. The Plant Journal,2000,24(4):437-446.
[7] Turóczy Z,Kis P K,Török M,et al. Overproduction of a rice aldo-keto reductase increases oxidative and heat stress tolerance by malondialdehyde and methylglyoxal detoxification[J]. Plant Molecular Biology,2011,75:399-412.
[8] Senguptaab D,Naika D,Reddyb A. Plant aldo-keto reductases(AKRs)as multi-tasking soldiers involved in diverse plant metabolic processes and stress defense[J]. Journal of Plant Physiology,2015,179:40-55.
[9] Jez J M,Bennett B,Schlegel M,et al. Penning comparative anatomy of the aldo-keto reductase superfamily[J]. The Biochememical Journal,2001,130/131/132:499-525.
[10] Petschacher B,Leitgeb S,Kavangagh K L,et al. The coenzyme specificity of Candida tenuis xylose reductase(AKR2B5)explored by site-directed mutagensis and X-ray crystallography[J]. Biochem,2005,385:75-83.
[11] Ryota S,Ginga S,Akiko N. Functional analysis of the AKR4C subfamily of Arabidopsis thaliana:model structures,substrate specificity,acrolein toxicity,and responses to light and[CO2] [J]. Biosci Biotechnol Biochem,2013,77(10):2038-2045.
[12] Bartels D,Engelhardt K,Roncarati R,et al. An ABA and GA modulated gene expressed in the barley embryoencodes an aldose reductase related protein[J]. The EMBO Journal,1991,10(5):1037-1043.
[13] Éva C,Tóth G,Oszvald M,et al. Overproduction of an Arabidopsis aldo-keto reduc-tase increases barley tolerance to oxidative and cadmium stress by an in vivo reactive aldehyde detoxification[J]. Plant Growth Regul,2014,74:55-63.
[14] Éva C,Zelenyánszki H,Tömösközi-Farkas R,et al. Transgenic barley expressing the Arabidopsis AKR4C9 aldo-keto reductase enzyme exhibits enhanced freezing tolerance and regenerative capacity[J]. South African Journal of Botany,2014,93:179-184.
[15] Tamura K,Peterson D,Peterson N. MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods[J]. Mol Biol Evol,2011,28(10):2731-2739.
[16] Mudalkar S,Sreeharsha R V,Reddy A R. A novel aldo-keto reductase from Jatropha curcas L. (JcAKR)plays a crucial role in the detoxification of methylglyoxal,a potent electrophile[J]. Plant Physiology,2016,195:39-49.
[17] Kanayama Y,Mizutani R,Nishiyama M,et al. Characterization of an uncharacterized aldo-keto reductase gene from peach and its rolein abiotic stress tolerance[J]. Phytochemistry,2014,104:30-36.
[18] 李妍,王雪花,陈忠文,等. 不结球白菜抗坏血酸合成基因BcGME的同源克隆及胁迫下的表达分析[J]. 南京农业大学学报,2016,39(2):205-212. DOI:10.7685/jnau.201507026. Li Y,Wang X H,Chen Z W,et al. Homologous cloning and expression analysis of ascorbic acid biosynthesis gene BcGME under stress from non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2016,39(2):205-212(in Chinese with English abstract).

相似文献/References:

[1]张爱芬,王立,侯喜林,等.不结球白菜S 位点受体激酶基因片段的克隆与表达分析[J].南京农业大学学报,2011,34(3):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
 ZHANG Ai-fen,WANG Li,HOU Xi-lin,et al.Cloning and expression analysis of SRK gene fragment in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(2):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
[2]黄建凤,徐小梦,沈其荣,等.2个不结球白菜品种硝酸盐累积差异的生理机制[J].南京农业大学学报,2011,34(1):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
 HUANG Jian-feng,XU Xiao-meng,SHEN Qi-rong,et al.Physiological mechanisms for the difference of nitrate accumulation in two cultivars of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(2):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
[3]陈以博,侯喜林,陈晓峰.不结球白菜幼苗耐热性机制初步研究[J].南京农业大学学报,2010,33(1):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
 CHEN Yi-bo,HOU Xi-lin,CHEN Xiao-feng.Studies on heat tolerance mechanism of non-heading Chinese cabbage(Brassica campestris ssp.chinensis)[J].Journal of Nanjing Agricultural University,2010,33(2):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
[4]郑佳秋,侯喜林,朱红芳.热激诱导不结球白菜热激蛋白合成与耐冷性分析[J].南京农业大学学报,2010,33(2):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
 ZHENG Jia-qiu,HOU Xi-lin,ZHU hong-fang.Induction of heat shock protein synthesis and chilling tolerance in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(2):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
[5]班青宇,耿建峰,侯喜林,等.不结球白菜叶片脯氨酸与可溶性蛋白含量的QTL分析[J].南京农业大学学报,2010,33(2):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
 BAN Qing-yu,GENG Jian-feng,HOU Xi-lin,et al.QTL mapping for proline and soluble protein content of leaves in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(2):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
[6]郝慧楠,王倩,侯喜林,等.不结球白菜主要农艺性状的分离分析[J].南京农业大学学报,2010,33(4):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
 HAO Hui-nan,WANG Qian,HOU Xi-lin,et al.Segregation analysis of the main agronomic characters of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
[7]荣子龙,侯喜林,史公军,等.不结球白菜晚抽薹BcFLC1基因克隆及表达分析[J].南京农业大学学报,2010,33(6):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
 RONG Zi-long,HOU Xi-lin,SHI Gong-jun,et al.Cloning and expression analysis of late bolting BcFLC1 gene from Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(2):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
[8]申娜娜,侯喜林.不结球白菜感染霜霉病菌后防御物质及酶的变化[J].南京农业大学学报,2009,32(1):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
 SHEN Shan-na,HOU Xi-lin.Changes of protective substances and enzymes in non-heading Chinese cabbage after infection by downy mildew[J].Journal of Nanjing Agricultural University,2009,32(2):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
[9]成妍,班青宇,王倩,等.不结球白菜游离小孢子培养及再生植株的倍性鉴定[J].南京农业大学学报,2009,32(2):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
 CHENG Yan,BAN Qing-yu,WANG Qian,et al.Isolated microspore culture and ploidy identification of microspore-derived plants in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2009,32(2):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
[10]刘琳,侯喜林,王利英,等.不结球白菜感染芜菁花叶病毒后4种防御酶活性变化及其抗病相关性[J].南京农业大学学报,2009,32(3):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]
 LIU Lin,HOU Xi-lin,WANG Li-ying,et al.Changes of four protective enzyme activities and relationships to resistance in non-heading Chinese cabbage after infection of Turnip mosaic virus[J].Journal of Nanjing Agricultural University,2009,32(2):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]

备注/Memo

备注/Memo:
收稿日期:2017-05-15。
基金项目:国家自然科学基金项目(31471886);国家973计划子课题项目(2009CB119001-04);江苏省农业科技支撑项目(BE2012325)
作者简介:张飞雪,硕士研究生。
通信作者:李英,教授,研究方向为蔬菜分子生物学与遗传育种,E-mail:yingli@njau.edu.cn。
更新日期/Last Update: 1900-01-01