[1]鲁秀梅,张宁,夏美玲,等.不同抗性甜瓜接种蔓枯病菌后内源激素含量变化及其相关基因的表达分析[J].南京农业大学学报,2018,41(2):248-255.[doi:10.7685/jnau.201706036]
 LU Xiumei,ZHANG Ning,XIA Meiling,et al.Changes of endogenous hormone contents and expression analysis of related genes in melon with different resistance after inoculated with Didymella bryoniae[J].Journal of Nanjing Agricultural University,2018,41(2):248-255.[doi:10.7685/jnau.201706036]
点击复制

不同抗性甜瓜接种蔓枯病菌后内源激素含量变化及其相关基因的表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年2期
页码:
248-255
栏目:
出版日期:
2018-03-27

文章信息/Info

Title:
Changes of endogenous hormone contents and expression analysis of related genes in melon with different resistance after inoculated with Didymella bryoniae
作者:
鲁秀梅 张宁 夏美玲 钱春桃 陈劲枫
南京农业大学园艺学院/作物遗传与种质创新国家重点实验室, 江苏 南京 210095
Author(s):
LU Xiumei ZHANG Ning XIA Meiling QIAN Chuntao CHEN Jinfeng
College of Horticulture/State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
关键词:
甜瓜蔓枯病内源激素基因表达
Keywords:
melongummy stem blightendogenous hormonegene expression
分类号:
S652.9
DOI:
10.7685/jnau.201706036
摘要:
[目的]本文旨在研究甜瓜抗感材料中内源激素含量及其相关基因表达量的分析,了解甜瓜抗蔓枯病的抗性机制。[方法]以抗蔓枯病甜瓜抗源PI420145和感蔓枯病甜瓜‘白皮脆’(对照)为材料,在接种蔓枯病菌后的不同时间(0、1、2、3、5、7 d)进行取样,测定内源激素乙烯、茉莉酸及水杨酸的含量,并利用荧光定量PCR技术分析叶片中乙烯、茉莉酸、水杨酸等防御信号途径中相关基因的表达特征。[结果]抗蔓枯病甜瓜材料PI420145叶片中的乙烯含量整体低于感蔓枯病材料‘白皮脆’,但在接种0和7 d时茉莉酸含量均高于‘白皮脆’,并且水杨酸含量也基本高于‘白皮脆’。在接种前期(0~3 d),PI420145叶片中乙烯途径相关基因ACS、EIN2的表达量显著高于‘白皮脆’,接种后期(5~7 d)ACS在PI420145中下调表达并且表达量显著低于‘白皮脆’。PI420145叶片中茉莉酸途径相关基因COI1、PDF1.2的表达量分别在接种后期和接种前期基本显著高于‘白皮脆’,而AOS表达量在接种后期则极显著低于‘白皮脆’。在PI420145叶片中除接种后1 d外,水杨酸途径相关基因EDS5的表达量均显著高于‘白皮脆’,而ICS、NPR1的表达量分别在接种后期和接种前期基本显著高于‘白皮脆’。[结论]PI420145叶片中低浓度的乙烯以及高浓度的茉莉酸和水杨酸提高了其对蔓枯病的抗病能力,PI420145叶片中EIN2、PDF1.2、EDS5NPR1在接种早期的高表达促使其比‘白皮脆’更早一步对蔓枯病菌的侵染作出反应。
Abstract:
[Objectives]The article aims to study the endogenous hormone and expression of related genes in melon with different resistance to gummy stem blight after being inoculated with Didymella bryoniae,and to understand the resistance mechanism of melon to gummy stem blight. [Methods]To analyze the changes of ethylene(ETH),jasmonic acid(JA),salicylic acid(SA) and expression levels of related genes in melon with different resistance after being inoculated with Didynella bryoniae,leaves of resistant resource PI420145 and susceptible ‘Baipicui’ were sampled for real-time PCR and determination of endogenous hormone after inoculation 0,1,2,3,5 and 7 d. [Results]ETH content in PI420145 was lower than that in ‘Baipicui’. However,JA content in PI420145 was higher than that in ‘Baipicui’ at 0 and 7 d,and SA content in PI420145 was mainly higher than that in ‘Baipicui’. In the early days of inoculation(0-3 d),the expression levels of ACS and EIN2 in PI420145 were significantly higher than those in ‘Baipicui’. In the later period of inoculation(5-7 d),ACS was down-regulated and the expression level in PI420145 was significantly lower than that in ‘Baipicui’. The expression levels of COI1 and PDF1.2 in PI420145 were mainly significantly higher than those in ‘Baipicui’ in the early days of inoculation and in the later period of inoculation respectively. However,the expression level of AOS in PI420145 was significantly lower than that in ‘Baipicui’ in the later period of inoculation. The expression levels of EDS5 were significantly higher than those in ‘Baipicui’ except 1 d after inoculation,and the expression levels of ICS and NPR1 were mainly significantly higher than those in ‘Baipicui’ in the early days of inoculation and in the later period of inoculation respectively. [Conclusions]Low concentration ETH and high concentration JA and SA in PI420145 enhanced their resistance to gummy stem blight. The high expression level of EIN2,PDF1.2,EDS5 and NPR1 in PI420145 in the early days of inoculation made reaction earlier than ‘Baipicui’ to the infection Didymella bryoniae.

参考文献/References:

[1] 吴明珠,伊鸿平,冯炯鑫,等. 哈密瓜南移东进生态育种与有机生态型无土栽培技术研究[J]. 中国工程科学,2000,2(8):83-88. Wu M Z,Yi H P,Feng J X,et al. Ecobreeding of Hamimelon and soilless cultivation of organic ecotype[J]. Engineering Science,2000,2(8):83-88(in Chinese with English abstract).
[2] 毕研飞,徐兵划,郭静,等. 分子标记辅助甜瓜抗蔓枯病基因聚合及‘白皮脆’品种改良[J]. 南京农业大学学报,2015,38(3):375-380. DOI:10.7685/j.issn.1000-2030.2015.03.004. Bi Y F,Xu B H,Guo J,et al. Pyramiding disease resistance genes by marker-assisted selection in melon(Cucumis melo L.)and ‘Baipicui’ breed improvement[J]. Journal of Nanjing Agricultural University,2015,38(3):375-380(in Chinese with English abstract).
[3] Tsutsumi C Y,Silva N D. Screening of melon populations for resistance to Didymella bryoniae in greenhouse and plastic tunnel conditions[J]. Brazilian Archives of Biology & Technology,2004,47(2):171-177.
[4] Wolukau J N,Zhou X H,Li Y,et al. Resistance to gummy stem blight in melon(Cucumis melo L.)germplasm and inheritance of resistance from plant introductions 157076,420145,and 323498[J]. HortScience,2007,42(2):215-221.
[5] Grant M R,Jones J D. Hormone(dis)harmony moulds plant health and disease[J]. Science,2009,324(5928):750-752.
[6] Leonreyes A,Does D V D,Lange E S D,et al. Salicylate-mediated suppression of jasmonate-responsive gene expression in Arabidopsis is targeted downstream of the jasmonate biosynthesis pathway[J]. Planta,2010,232(6):1423-1432.
[7] Ma B,Cui M L,Sun H J,et al. Subcellular localization and membrane topology of the melon ethylene receptor CmERS1[J]. Plant Physiology,2006,141(2):587.
[8] Meng X,Li F,Liu C,et al. Isolation and characterization of an ERF transcription factor gene from cotton(Gossypium barbadense L.)[J]. Plant Molecular Biology Reporter,2010,28(1):176.
[9] Song F,Zheng Z. The correlation between inhibition of ethylene production and trifluralin-induced resistance of cotton seedlings against,Fusarium oxysporum f.sp. vasinfectum[J]. Acta Photophysiologica Sinica,1998,24(2):111-118.
[10] Wasternack C. Jasmonates:an update on biosynthesis,signal transduction and action in plant stress response,growth and development[J]. Annals of Botany,2007,100(4):681-697.
[11] Balbi V,Devoto A. Jasmonate signaling network in Arabidopsis thaliana:crucial regulatory nodes and new physiological scenarios[J]. New Phytologist,2008,177(2):301-318.
[12] Dong X,Hong Z,Chatterjee J,et al. Expression of callose synthase genes and its connection with Npr1 signaling pathway during pathogen infection[J]. Planta,2008,229(1):87-98.
[13] 李英,张永兵,Wolukau J N,等. 甜瓜蔓枯病菌子实体法分离及A型菌株产孢条件研究[J]. 果树学报,2007,24(1):84-88. Li Y,Zhang Y B,Wolukau J N,et al. Fruit-body isolation of Didymella bryoniae and sporulation conditions of its A stain[J]. Journal of Fruit Science,2007,24(1):84-88(in Chinese with English abstract).
[14] Zhang Y,Kyle M,Anagnostou K,et al. Screening melon(Cucumis melo L.)for resistance to gummy stem blight in the greenhouse and field[J]. HortScience,1997,32(1):117-121.
[15] 李宗霆,周燮. 植物激素及其免疫检测技术[M]. 南京:江苏科学技术出版社,1996. Li Z T,Zhou X. Plant Hormones and Their Immunological Detection Techniques[M]. Nanjing:Jiangsu Science and Technology Press,1996(in Chinese).
[16] Cooper W,Bouzayen M,Hamilton A,et al. Use of transgenic plants to study the role of ethylene and polygalacturonase during infection of tomato fruit by Colletotrichum gloeosporioides[J]. Plant Pathology,1998,47(3):308-316.
[17] 翁宇,戴小枫. 农作物乙烯合成和信号转导途径及其对抗病反应的调控[J]. 分子植物育种,2008,6(4):739-748. Weng Y,Dai X F. Ethylene biosynthesis and signal transduction and its regulation on crop disease resistance[J]. Molecular Plant Breeding,2008,6(4):739-748(in Chinese with English abstract).
[18] 石延霞,于洋,傅俊范,等. 病原菌诱导后黄瓜叶片中脂氧合酶活性与茉莉酸积累的关系[J]. 植物保护学报,2008,35(6):486-490. Shi Y X,Yu Y,Fu J F,et al. Relationship between LOX activity and JA accumulations in cucumber leaves induced by pathogen[J]. Acta Phytophylacica Sinica,2008,35(6):486-490(in Chinese with English abstract).
[19] 王文静,杨小川,丁永强,等. 甘蓝型油菜COI1的调控功能分析[J]. 中国农业科学,2015,48(10):1882-1891. Wang W J,Yang X C,Ding Y Q,et al. Functional analysis of COI1 genes in oilseed rape(Brassica napus L.)[J]. Scientia Agricultura Sinica,2015,48(10):1882-1891(in Chinese with English abstract).
[20] 冀瑞琴,董祥柏,冯辉,等. PDF1.2基因在转草酸氧化酶基因甘蓝型油菜中的表达[J]. 植物生理学通讯,2009,45(5):479-482. Ji R Q,Dong X B,Feng H,et al. Expression of PDF1.2 in oxalate oxidase transgenic oilseed rape(Brassica napus L.)[J]. Plant Physiology Communications,2009,45(5):479-482(in Chinese with English abstract).
[21] Govrin E M,Levine A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea[J]. Current Biology,2000,10(13):751-757.
[22] Delaney T P,Uknes S,Vernooij B,et al. A central role of salicylic acid in plant disease resistance[J]. Science,1994,266(5188):1247-1250.
[23] Wildermuth M C,Dewdney J,Wu G,et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature,2001,414(6863):562-565.
[24] 徐兵划,钱春桃,王红英,等. 甜瓜蔓枯病抗性聚合材料中防卫基因的表达分析[J]. 南京农业大学学报,2014,37(5):63-68. DOI:10. 7685/j.issn.1000-2030.2014.05.010. Xu B H,Qian C T,Wang H Y,et al. The expression analysis of defense genes in the genes pyramided melon(Cucumis melo L.)resistance to gummy stem blight[J]. Journal of Nanjing Agricultural University,2014,37(5):63-68(in Chinese with English abstract).
[25] 刘佳. 美洲南瓜苯丙氨酸解氨酶(PAL)基因克隆、表达分析及品种抗灰霉病研究[D]. 兰州:甘肃农业大学,2013. Liu J. Cloning and expression analysis of phenylalanine ammonialyase gene(PAL)from Cucurbita pepo and the study on varieties resistance to Botrytis cinerea[D]. Lanzhou:Gansu Agricultural University,2013(in Chinese with English abstract).
[26] Zhang Y,Xu S,Ding P,et al. Control of salicylic acid synthesis and systemic acquired resistance by two members of a plant-specific family of transcription factors[J]. Proc Natl Acad Sci USA,2010,107(42):18220-18225.
[27] 高婷婷. 大白菜抗霜霉病防御信号途径中相关基因的表达分析[D]. 扬州:扬州大学,2013. Gao T T. Expression analysis of major genes involved in signaling pathways during infection of Chinese cabbage with Hyaloperonospora parasitica[D]. Yangzhou:Yangzhou University,2013(in Chinese with English abstract).
[28] 武健东,洪玲,江海洋,等. 玉米抗病相关基因NPR1的同源克隆及表达分析[J]. 安徽农业大学学报,2015,42(5):651-656. Wu J D,Hong L,Jiang H Y,et al. Cloning and expression analysis of the disease-related gene NPR1 in maize[J]. Journal of Anhui Agricultural University,2015,42(5):651-656(in Chinese with English abstract).

相似文献/References:

[1]施泽平,郭世荣,康云艳,等.基于生长度日的温室甜瓜发育模拟模型的研究[J].南京农业大学学报,2005,28(2):0.[doi:10.7685/j.issn.1000-2030.2005.02.028]
[2]苗永美,王万洋,杨海林,等.外源Ca2+、SA和ABA缓解甜瓜低温胁迫伤害的生理作用[J].南京农业大学学报,2013,36(4):25.[doi:10.7685/j.issn.1000-2030.2013.04.005]
 MIAO Yongmei,WANG Wanyang,YANG Hailin,et al.Physiological effects of exogenous Ca2+, SA and ABA in alleviating low temperature stress of melon seedlings[J].Journal of Nanjing Agricultural University,2013,36(2):25.[doi:10.7685/j.issn.1000-2030.2013.04.005]
[3]马华,程春燕,徐建,等.黄瓜-酸黄瓜渐渗系的验证及其抗蔓枯病筛选[J].南京农业大学学报,2015,38(3):369.[doi:10.7685/j.issn.1000-2030.2015.03.003]
 MA Hua,CHENG Chunyan,XU Jian,et al.Verification of cucumber-sour cucumber introgression lines and screening resistant to gummy stem blight[J].Journal of Nanjing Agricultural University,2015,38(2):369.[doi:10.7685/j.issn.1000-2030.2015.03.003]
[4]徐兵划,钱春桃,王红英,等.甜瓜蔓枯病抗性聚合材料中防卫基因的表达分析[J].南京农业大学学报,2014,37(5):63.[doi:10.7685/j.issn.1000-2030.2014.05.010]
 XU Binghua,QIAN Chuntao,WANG Hongying,et al.The expression analysis of defense genes in the genes pyramided melon(Cucumis melo L.)resistance to gummy stem blight[J].Journal of Nanjing Agricultural University,2014,37(2):63.[doi:10.7685/j.issn.1000-2030.2014.05.010]
[5]毕研飞,徐兵划,郭静,等.分子标记辅助甜瓜抗蔓枯病基因聚合及‘白皮脆’品种改良[J].南京农业大学学报,2015,38(3):375.[doi:10.7685/j.issn.1000-2030.2015.03.004]
 BI Yanfei,XU Binghua,GUO Jing,et al.Pyramiding disease resistance genes by marker-assisted selection in melon(Cucumis melo L.)and’Baipicui’breed improvement[J].Journal of Nanjing Agricultural University,2015,38(2):375.[doi:10.7685/j.issn.1000-2030.2015.03.004]

备注/Memo

备注/Memo:
收稿日期:2017-06-22。
基金项目:国家自然科学基金新疆联合基金项目(UI178307)
作者简介:鲁秀梅,硕士研究生。
通信作者:钱春桃,副教授,主要从事园艺作物遗传育种与分子生物技术研究,Tel:025-84396279,E-mail:chuntaoq@njau.edu.cn。
更新日期/Last Update: 1900-01-01