[1]向亚男,黄蕊蕊,顾婷婷,等.基于RNA-Seq的拟南芥不定芽再生过程的基因表达谱分析[J].南京农业大学学报,2018,41(2):308-320.[doi:10.7685/jnau.201703026]
 XIANG Yanan,HUANG Ruirui,GU Tingting,et al.Analysis of RNA-Seq-based expression profiles during adventitious shoot regeneration in Arabidopsis thaliana[J].Journal of Nanjing Agricultural University,2018,41(2):308-320.[doi:10.7685/jnau.201703026]
点击复制

基于RNA-Seq的拟南芥不定芽再生过程的基因表达谱分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年2期
页码:
308-320
栏目:
出版日期:
2018-03-27

文章信息/Info

Title:
Analysis of RNA-Seq-based expression profiles during adventitious shoot regeneration in Arabidopsis thaliana
作者:
向亚男1 黄蕊蕊2 顾婷婷2 甘立军1
1. 南京农业大学生命科学学院, 江苏 南京 210095;
2. 南京农业大学园艺学院, 江苏 南京 210095
Author(s):
XIANG Yanan1 HUANG Ruirui2 GU Tingting2 GAN Lijun1
1. College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China;
2. College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
拟南芥不定芽再生两步培养法RNA-Seq基因表达植物激素
Keywords:
Arabidopsis thalianaadventitious shoot regenerationtwo-step processRNA-Seqgene expressionphytohormone
分类号:
Q789
DOI:
10.7685/jnau.201703026
摘要:
[目的]本研究旨在分析拟南芥愈伤组织形成和不定芽再生2个阶段基因的差异表达情况,探究不定芽再生背后的相关基因调控机制。[方法]采用拟南芥不定芽再生两步培养法培养根外植体,利用RNA-Seq高通量测序技术分别对愈伤组织诱导培养基(CIM)培养0 d根外植体(C0)、CIM培养4 d根外植体(C4)、芽诱导培养基(SIM)培养3 d根外植体(S3)进行基因测序,利用软件分析基因表达情况。[结果]将C4的基因表达量和C0进行比对,共检测到4 332个差异表达基因,其中1 399个基因表达上调,2 933个基因表达下调;在不定芽再生阶段(S3与C4的基因表达量进行比对)检测到2 910个差异表达的基因,其中2 231个基因表达上调,679个基因表达下调。对差异表达基因进行转录物功能注释分析发现:明显富集的功能分类多与激素合成、代谢等生物过程有关。在愈伤组织形成阶段一些与细胞分裂素分解代谢相关的CKX基因和与生长素活性相关的GH3家族基因表达量明显增加,而与细胞分裂素合成相关的多个基因表达量却明显降低。在不定芽再生阶段与细胞分裂素合成相关基因表达量明显增加,CKX家族部分成员表达量则明显降低。同时,还发现多个转录因子基因表达量在不同阶段发生显著变化,比如AP2/EREBP家族的部分成员。[结论]对拟南芥不定芽再生过程基因表达谱进行检测和对比分析,获得了大量基因表达谱分析数据,为揭示不定芽再生过程的基因调控机制提供了有效的数据和理论依据。
Abstract:
[Objectives]To study the underlying regulation mechanisms of adventitious shoot regeneration,we analyzed the dynamic transcriptome profiles of two step procedure during Arabidopsis thaliana adventitious shoot regeneration. [Methods]In this study,adventitious shoots were regenerated from root explants through the two-step process which means preincubation on an auxin-rich callus induction medium(CIM) before transferred to a cytokinin-rich shoot induction medium(SIM). We obtained the transcriptome data from three developmental time-points(0,4 d on CIM and 3 d on SIM in vitro culture). [Results]To identify the differentially expressed genes(DEGs) during callus formation,we compared the expression profiles of 4 d CIM to 0 d CIM and detected 4 332 DEGs in total,among which 1 399 genes were upregulated and 2 933 were downregulated. Moreover,we identified DEGs during adventitious shoot regeneration by comparing expression profiles of 3 d SIM to 4 d CIM. Finally,we identified a total of 2 910 DEGs including 2 231 up-regulated and 679 down-regulated genes. We performed the Gene Ontology(GO) enrichment analysis of the DEGs and our results suggested that those genes with highly enriched GO terms were associated with phytohormone biosynthesis and degradation. During callus formation,some genes involved in cytokinin oxidase CKX and indole-3-acetic acid amido synthetase GH3 gene family were highly expressed,while some members of cytokinin synthetase were downregulated. During adventitious shoot regeneration,some genes related to cytokinin synthetase were upregulated,and member genes of CKX family were downregulated. Additionally,we investigated the expression changes of some transcription factor during the two different stages,including AP2/EREBP family members. [Conclusions]Here,we compared and analyzed the transcriptome profiles of two stages during adventitious shoot regeneration of Arabidopsis by RNA sequencing technology. The transcriptome data will provide a valuable reference for future research on regulatory mechanisms underlying plant adventitious shoot regeneration.

参考文献/References:

[1] Deklerk G J,Amholdt-Schmitt B,Lieberei R,et al. Regeneration of roots,shoots and embryos:physiological,biochemical and molecular aspects[J]. Biologia Plantarum,1997,39(1):53-66.
[2] Sangwan R S,Harada H. Chemical regulation of callus growth,organogenesis,plant regeneration,and somatic embryogenesis in Antirrhinum majus tissue and cell cultures[J]. Journal of Experimental Botany,1975,26(6):868-881.
[3] Dhaliwal H S,Ramesar-Fortner N S,Yeung E C,et al. Competence,determination,and meristemoid plasticity in tobacco organogenesis in vitro[J]. Canadian Journal of Botany,2003,81(6):611-621.
[4] Feldmann K A,Marks M D. Rapid and efficient regeneration of plants from explants of Arabidopsis thaliana[J]. Plant Science,1986,47(1):63-69.
[5] Sangwan R S,Bourgeois Y,Brown S,et al. Characterization of competent cells and early events of Agrobacterium-mediated genetic transformation in Arabidopsis thaliana[J]. Planta,1992,188(3):439-456.
[6] Valvekens D,Montagu M V,Lijsebettens M V,et al. Agrobacterium tumefaciens mediated transformation of Arabidopsis thaliana root explants using kanamycin selection[J]. Proc Natl Acad Sci USA,1988,85(15):5536-5540.
[7] Sangwan R S,Sangwan-Norreel B S,Harada H,et al. In vitro techniques and plant morphogenesis:fundamental aspects and practical applications[J]. Plant Biotechnology,1997,14(2):93-100.
[8] Catterou M,Dubois F,Smets R,et al. hoc:an Arabidopsis mutant overproducing cytokinins and expressing high in vitro organogenic capacity[J]. The Plant Journal,2002,30(3):273-287.
[9] Ren B,Liang Y,Deng Y,et al. Genome-wide comparative analysis of type-A Arabidopsis response regulator genes by overexpression studies reveals their diverse roles and regulatory mechanisms in cytokinin signaling[J]. Cell Research,2009,19(10):1178-1190.
[10] Gordon S P,Heisler M G,Reddy G V,et al. Pattern formation during de novo assembly of the Arabidopsis shoot meristem[J]. Development,2007,134(19):3539-3548.
[11] Che P,Lall S,Nettleton D,et al. Gene expression programs during shoot,root,and callus development in Arabidopsis tissue culture[J]. Plant Physiology,2006,141(2):620-637.
[12] Che P,Gingerich D J,Lall S,et al. Global and hormone-induced gene expression changes during shoot development in Arabidopsis[J]. Plant Cell,2002,14(11):2771-2785.
[13] Su Y H,Chen Z J,Su Y X,et al. Pattern analysis of stem cell differentiation during in vitro Arabidopsis organogenesis[J]. Frontiers of Biology,2010,5(5):464-470.
[14] Motte H,Verstraeten I,Werbrouck S,et al. CUC2 as an early marker for regeneration competence in Arabidopsis root explants[J]. Journal of Plant Physiology,2011,168(13):1598-1601.
[15] Riechmann J L,Heard J,Martin G,et al. Arabidopsis transcription factors:genome-wide comparative analysis among eukaryotes[J]. Science,2000,290(5499):2105-2110.
[16] Xu K,Liu J,Fan M,et al. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs[J]. Genomics,2012,100(2):116-124.
[17] Cary A J,Che P,Howell S H. Development events and shoot meristem gene expression patterns during shoot development in Arabidopsis thaliana[J]. The Plant Journal,2002,32(6):867-877.
[18] Schuster J,Knill T,Reichelt M,et al. BRANCHED-CHAIN AMINOTRANSFERASE4 is part of the chain elongation pathway in the biosynthesis of methionine-derived glucosinolates in Arabidopsis[J]. The Plant Cell,2006,18(10):2664-2679.
[19] Naseer S,Lee Y,Lapierre C,et al. Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin[J]. Proc Natl Acad Sci USA,2012,109(25):10101-10106.
[20] 王兴春,杨致荣,张树伟,等. 拟南芥不定芽发生早期的数字基因表达谱分析[J]. 生物工程学报,2013,29(2):189-202. Wang X C,Yang Z R,Zhang S W,et al. Digital gene expression profiling analysis of the early adventitious shoot formation in Arabidopsis thaliana[J]. Chinese Journal of Biotechnology,2013,29(2):189-202(in Chinese with English abstract).
[21] Takei K,Yamaya T,Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin[J]. Journal of Biological Chemistry,2004,279(40):41866-41872.
[22] Werner T,Köllmer I,Bartrina I,et al. New insights into the biology of cytokinin degradation[J]. Plant Biology,2006,8:371-381.
[23] Hagen G,Kleinschmidt A,Guilfoyle T. Auxin-regulated gene expression in intact soybean hypocotyl and excised hypocotyl sections[J]. Planta,1984,162(2):147-153.
[24] Miyawaki K,Matsumoto-Kitano M,Kakimoto T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis:tissue specificity and regulation by auxin,cytokinin,and nitrate[J]. The Plant Journal,2004,37(1):128-138.
[25] Traas J,Monéger F. Systems biology of organ initiation at the shoot apex[J]. Plant Physiology,2010,152(2):420-427.
[26] Riechmann J L,Meyerowitz E M. The AP2/EREBP family of plant transcription factors[J]. Biological Chemistry,1998,379(6):633-646.
[27] Banno,H,Ikeda Y,Niu Q W,et al. Overexpression of Arabidopsis ESR1 induces initiation of shoot regeneration[J]. The Plant Cell,2001,13(12):2609-2618.
[28] Kang N Y,Lee H W,Kim J. The AP2/EREBP gene PUCHI co-acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in Arabidopsis[J]. Plant and Cell Physiology,2013,54(8):1326-1334.
[29] Yadav S R,Bishopp A,Helariutta Y,et al. Plant development:early events in lateral root initiation[J]. Current Biology,2010,20(19):R843-R845.

相似文献/References:

[1]修林春,张炜.高等植物液泡加工酶VPE家族的生物信息学分析[J].南京农业大学学报,2010,33(3):19.[doi:10.7685/j.issn.1000-2030.2010.03.004]
 XIU Lin-chun,ZHANG Wei.Bioinformatic analysis of VPE family in higher plants[J].Journal of Nanjing Agricultural University,2010,33(2):19.[doi:10.7685/j.issn.1000-2030.2010.03.004]
[2]孙力军,刘会敏,董汉松.核孔蛋白Atnup98-like降低拟南芥对细菌和干旱的抗性[J].南京农业大学学报,2010,33(4):37.[doi:10.7685/j.issn.1000-2030.2010.04.007]
 SUN Li-jun,LIU Hui-min,DONG Han-song.A nucleoporin98-like in Arabidopsis reduces plant defense against bacterial infection and drought stress[J].Journal of Nanjing Agricultural University,2010,33(2):37.[doi:10.7685/j.issn.1000-2030.2010.04.007]
[3]魏秋平,安振锋,章文华.多胺调节拟南芥幼苗耐盐性的初步研究[J].南京农业大学学报,2008,31(3):55.[doi:10.7685/j.issn.1000-2030.2008.03.011]
 WEI Qiu-ping,AN Zhen-feng,ZHANG Wen-hua.Primary study on salt tolerance regulated by polyamines in Arabidopsis seedlings[J].Journal of Nanjing Agricultural University,2008,31(2):55.[doi:10.7685/j.issn.1000-2030.2008.03.011]
[4]喻德跃,F.Quigley,R.Mache,等.拟南芥(Arabidopsis thaliana)VSP cDNA的克隆、鉴定及基因表达[J].南京农业大学学报,1999,22(3):13.[doi:10.7685/j.issn.1000-2030.1999.03.004]
[5]曾后清,刘赣,朱毅勇*,等.拟南芥体内硝酸盐积累差异与细胞膜H+-ATPase的关系[J].南京农业大学学报,2011,34(6):89.[doi:10.7685/j.issn.1000-2030.2011.06.016]
 ZENG Hou-qing,LIU Gan,ZHU Yi-yong*,et al.The relationship between the accumulation of nitrate and plasma membrane H+-ATPase in Arabidopsis[J].Journal of Nanjing Agricultural University,2011,34(2):89.[doi:10.7685/j.issn.1000-2030.2011.06.016]
[6]李红娟,刘廷利,刘莉,等.转棉花Gbve1基因拟南芥抗黄萎菌的细胞学机制分析[J].南京农业大学学报,2014,37(2):53.[doi:10.7685/j.issn.1000-2030.2014.02.009]
 LI Hongjuan,LIU Tingli,LIU Li,et al.Preliminary study on the mechanism of transgenic Gbve1 Arabidopsis resistance to Verticillium dahliae[J].Journal of Nanjing Agricultural University,2014,37(2):53.[doi:10.7685/j.issn.1000-2030.2014.02.009]
[7]李芳芳,杨娜,钱猛,等.生长素参与三十烷醇诱导的拟南芥侧根发育[J].南京农业大学学报,2018,41(3):473.[doi:10.7685/jnau.201709016]
 LI Fangfang,YANG Na,QIAN Meng,et al.Auxin is involved in triacontanol-induced lateral root development in Arabidopsis thaliana[J].Journal of Nanjing Agricultural University,2018,41(2):473.[doi:10.7685/jnau.201709016]
[8]李祎,杨顺瑛,郝东利,等.光氮互作对拟南芥col-0和CS3721512突变体碳、氮代谢的影响[J].南京农业大学学报,2018,41(5):873.[doi:10.7685/jnau.201801049]
 LI Yi,YANG Shunying,HAO Dongli,et al.Effects of light and nitrogen interaction on carbon-nitrogen metabolism of Arabidopsis thaliana col-0 and mutant CS3721512[J].Journal of Nanjing Agricultural University,2018,41(2):873.[doi:10.7685/jnau.201801049]

备注/Memo

备注/Memo:
收稿日期:2017-03-21。
基金项目:国家自然科学基金项目(31400269)
作者简介:向亚男,硕士研究生。
通信作者:甘立军,副教授,主要从事植物激素生理学研究,E-mail:ganlj@njau.edu.cn。
更新日期/Last Update: 1900-01-01