[1]宋文敏,孙嫚嫚,蒋明义.水稻中SAPK8/9/10与OsRbohB/E蛋白互作在ABA诱导H2O2产生中的作用[J].南京农业大学学报,2018,41(2):321-329.[doi:10.7685/jnau.201704018]
 SONG Wenmin,SUN Manman,JIANG Mingyi.Functional analysis of the interaction between SAPK and OsRboh in abscisic acid-induced H2O2 production in rice[J].Journal of Nanjing Agricultural University,2018,41(2):321-329.[doi:10.7685/jnau.201704018]
点击复制

水稻中SAPK8/9/10与OsRbohB/E蛋白互作在ABA诱导H2O2产生中的作用()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年2期
页码:
321-329
栏目:
出版日期:
2018-03-27

文章信息/Info

Title:
Functional analysis of the interaction between SAPK and OsRboh in abscisic acid-induced H2O2 production in rice
作者:
宋文敏 孙嫚嫚 蒋明义
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
SONG Wenmin SUN Manman JIANG Mingyi
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
脱落酸应激激活蛋白激酶OsRboh蛋白互作过氧化氢
Keywords:
abscisic acid (ABA)stress-activated protein kinase (SAPK)OsRbohprotein-protein interactionhydrogen peroxide
分类号:
Q945
DOI:
10.7685/jnau.201704018
摘要:
[目的]本文旨在验证水稻中SAPK8/9/10与OsRbohB/E蛋白的互作及其在ABA诱导的H2O2产生中的作用。[方法]先采用酵母双杂交系统进行初步的SAPK8/9/10与OsRbohB/E蛋白的互作分析,然后采用双分子荧光互补(BiFC)、GST-pull down和体外磷酸化技术验证其互作。为了进一步探讨SAPKs与OsRbohs在ABA信号转导中的作用,采用水稻原生质体瞬时体系分析ABA处理时SAPKs与OsRbohs对H2O2产生的影响。[结果]SAPK8/9/10与OsRbohB和OsRbohE在体内、外存在相互作用,且OsRbohs是SAPKs磷酸化的底物。与对照组相比,水稻原生质体瞬时过表达SAPK9/10SAPKs-OE)和OsRbohB/EOsRbohs-OE)组中H2O2的产生明显增加,且ABA处理后增加趋势增强;瞬时沉默SAPKs(ds-SAPKs)和OsRbohs(ds-OsRbohs)组中H2O2的产生明显下调,且ABA诱导的H2O2增加在这些原生质体中也均被抑制;SAPKs-OE+ds-OsRbohs、ds-SAPKs+OsRbohs-OE组中H2O2的产生表现出不同程度的减少。[结论]SAPKs与OsRbohs共同参与调节ABA诱导的H2O2的产生。
Abstract:
[Objectives]The aim of this study is to identify the interaction between rice sucrose nonfermenting1-related protein kinase 2 SAPKs and rice NADPH oxidases OsRbohs,and its role in ABA-induced H2O2 production in rice. [Methods]To clarify the interactions between SAPK8/9/10 and OsRbohB or OsRbohE,a yeast two-hybrid system was firstly used,and then glutathione S-transferase(GST) pull-down assay,bimolecular fluorescence complementation(BiFC) analysis and in vitro phosphorylation test were performed to confirm the interactions. To investigate the roles of SAPKs and OsRbohs in ABA-induced H2O2 production,a transient gene expression analysis and a transient RNA interference(RNAi) test in rice protoplasts were also used. [Results]Our results showed that OsRbohB/E interacted with SAKP8/9/10,and they were phosphorylated by SAPK8/9/10,indicating that OsRbohB/E were phosphorylation substrates of SAPK8/9/10. Further,under the control conditions,the transient over-expression of SAPK9/10 or OsRbohB/E increased the production of H2O2 in the protoplasts,and the RNAi silencing of SAPK9/10 or OsRbohB/E decreased the production of H2O2. ABA treatment induced a significant increase in the production of H2O2 in the control protoplasts,and the increases were further enhanced in the protoplasts transiently expressing SAPK9/10 or OsRbohB/E,but were inhibited in the protoplasts transiently silenced SAPK9/10 or OsRbohB/E. Moreover,the transient expression analysis in combination with the transient RNAi test in protoplasts also showed that both SAPKs and OsRbohs were required for ABA-induced H2O2 production. [Conclusions]These results indicate that both SAPKs and OsRbohs coordinately regulate the production of H2O2 in ABA signaling.

参考文献/References:

[1] Zhu J K. Salt and drought stress signal transduction in plants[J]. Annu Rev Plant Biol,2002,53:247-273.
[2] Zhang Y,Zhu H,Zhang Q,et al. Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis[J]. Plant Cell,2009,21:2357-2377.
[3] Mittler R,Blumwald E. The roles of ROS and ABA in systemic acquired acclimation[J]. Plant Cell,2015,27:64-70.
[4] Zong W,Tang N,Yang J,et al. Feedback regulation of ABA signaling and biosynthesis by a bZIP transcription factor targets drought-resistance-related genes[J]. Plant Physiol,2016,171:2810-2825.
[5] Wang P,Song C P. Guard-cell signalling for hydrogen peroxide and abscisic acid[J]. New Phytologist,2008,178:703-718.
[6] Apel K,Hirt H. Reactive oxygen species:metabolism,oxidative stress,and signal transduction[J]. Annu Rev Plant Biol,2004,55:373-399.
[7] Jiang M,Zhang J. Involvement of plasma-membrane NADPH oxidase in abscisic acid-and water stress-induced antioxidant defense in leaves of maize seedlings[J]. Planta,2002,215:1022-1030.
[8] Kwak J M,Mori I C,Pei Z M,et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis[J]. EMBO J,2003,22:2623-2633.
[9] Wong H L,Pinontoan R,Hayashi K,et al. Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension[J]. Plant Cell,2007,19:4022-4034.
[10] Shi B,Ni L,Zhang A,et al. OsDMI3 is a novel component of abscisic acid signaling in the induction of antioxidant defense in leaves of rice[J]. Mol Plant,2012,5:1359-1374.
[11] Zhang H,Liu Y,Wen F,et al. A novel rice C2H2-type zinc finger protein,ZFP36,is a key player involved in abscisic acid-induced antioxidant defence and oxidative stress tolerance in rice[J]. J Exp Bot,2014,65:5795-5809.
[12] Kulik A,Wawer I,Krzywińska E,et al. SnRK2 protein kinases-key regulators of plant response to abiotic stresses[J]. Omics,2011,15:859.
[13] Dey A,Samanta M K,Gayen S,et al. The sucrose non-fermenting 1-related kinase 2 gene SAPK9 improves drought tolerance and grain yield in rice by modulating cellular osmotic potential,stomatal closure and stress-responsive gene expression[J]. BMC Plant Biol,2016,16:158.
[14] Hrabak E M,Chan C W,Gribskov M,et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases[J]. Plant Physiol,2003,132:666-680.
[15] Mustilli A C. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production[J]. Plant Cell,2002,14:3089-3099.
[16] Sirichandra C,Gu D,Hu H C,et al. Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase[J]. FEBS Lett,2009,583:2982-2986.
[17] Kobayashi Y,Yamamoto S,Minami H,et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell,2004,16:1163-1177.
[18] Lee M O,Cho K,Kim S H,et al. Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level[J]. Planta,2008,227:981-990.
[19] Zhang A,Jiang M,Zhang J,et al. Mitogen-activated protein kinase is involved in abscisic acid-induced antioxidant defense and acts downstream of reactive oxygen species production in leaves of maize plants[J]. Plant Physiol,2006,141:475-487.
[20] Zhang H,Ni L,Liu Y,et al. The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice[J]. J Integr Plant Biol,2012,54:500-510.
[21] Zhai Z,Sooksa-Nguan T,Vatamaniuk O K. Establishing RNA interference as a reverse-genetic approach for gene functional analysis in protoplasts[J]. Plant Physiol,2009,149:642-652.
[22] Kobayashi M,Ohura I,Kawakita K,et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase[J]. Plant Cell,2007,19:1065-1080.
[23] Sagi M,Fluhr R. Superoxide production by plant homologues of the gp91phox NADPH oxidase. modulation of activity by calcium and by tobacco mosaic virus infection[J]. Plant Physiol,2001,126:1281-1290.
[24] Yoshida R,Umezawa T,Mizoguchi T,et al. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid(ABA)and osmotic stress signals controlling stomatal closure in Arabidopsis[J]. J Biol Chem,2006,281:5310-5318.
[25] Umezawa T,Sugiyama N,Mizoguchi M,et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis[J]. Proc Natl Acad Sci USA,2009,106(41):17588-17593.
[26] Santiago J,Rodrigues A,Saez A,et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs[J]. Plant J,2009,60:575-588.
[27] Fujita Y,Nakashima K,Yoshida T,et al. Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis[J]. Plant Cell Physiol,2009,50:2123-2132.
[28] Yoshida T,Fujita Y,Sayama H,et al. AREB1,AREB2,and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation[J]. Plant J,2010,61:672-685.
[29] Geiger D,Scherzer S,Mumm P,et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair[J]. Proc Natl Acad Sci USA,2009,106:21425-21430.
[30] Sato A,Sato Y,Fukao Y,et al. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase[J]. Biochem J,2009,424:439-448.

相似文献/References:

[1]沙琴,蒋明义,林凡,等.水分胁迫诱导的玉米叶片钙调素基因表达及其与ABA和H2O2的关系[J].南京农业大学学报,2009,32(3):52.[doi:10.7685/j.issn.1000-2030.2009.03.010]
 SHA Qin,JIANG Ming-yi,LIN Fan,et al.The expression of calmodulin genes induced by water stress is associated with ABA and H_2O_2[J].Journal of Nanjing Agricultural University,2009,32(2):52.[doi:10.7685/j.issn.1000-2030.2009.03.010]
[2]徐义俊,周燮,陈婉芬,等.脱落酸放射免疫测试药箱的研制[J].南京农业大学学报,1988,11(00):51.[doi:10.7685/j.issn.1000-2030.1988.00.007]
 Xu Yijun,Zhou Xie,Chen Wanfen,et al.A RADIOIMMUNOASSAY KIT FOR FREE AND CONJUGATED ABSCISC ACID[J].Journal of Nanjing Agricultural University,1988,11(2):51.[doi:10.7685/j.issn.1000-2030.1988.00.007]
[3]周燮,章元寿,徐义俊,等.用放射免疫法检测灰霉葡萄孢菌生产的脱落酸[J].南京农业大学学报,1988,11(00):127.[doi:10.7685/j.issn.1000-2030.1988.00.019]
[4]陈婉芬,徐义俊,周燮.梅与苹果在越冬期间冬芽脱落酸含量的变化[J].南京农业大学学报,1988,11(00):133.[doi:10.7685/j.issn.1000-2030.1988.00.023]
[5]张能刚,徐义俊,周燮.脱落酸间接酶联免疫检测法的建立[J].南京农业大学学报,1991,14(03):21.[doi:10.7685/j.issn.1000-2030.1991.03.005]
 Zhang Nenggang,Xu Yijun,Zhou Xie.THE DEVELOPMENT OF AN INDIRECT ENZYME LINKED IMMUNOSORBENT ASSAY FOR ABSCISIC ACID[J].Journal of Nanjing Agricultural University,1991,14(2):21.[doi:10.7685/j.issn.1000-2030.1991.03.005]
[6]周燮,徐义俊,陈婉芬.脱落酸(ABA)的放射免疫测定法(RIA)[J].南京农业大学学报,1985,8(01):89.[doi:10.7685/j.issn.1000-2030.1985.01.014]
[7]夏凯,周燮.脱落酸结合蛋白的纯化及抗体制备[J].南京农业大学学报,1996,19(3):6.[doi:10.7685/j.issn.1000-2030.1996.03.002]
 Xia Kai,Zhou Xie.PURIFICATION AND CHARACTERIZATION OF ABSCISIC ACID BINDING PROTEINS AND DEVELOPMENT OF THE POLYCLONAL ANTIBODIES[J].Journal of Nanjing Agricultural University,1996,19(2):6.[doi:10.7685/j.issn.1000-2030.1996.03.002]
[8]王淑敏,侯喜林*,李英,等.芜菁花叶病毒对不结球白菜内源激素含量及代谢相关基因转录水平的影响[J].南京农业大学学报,2011,34(5):13.[doi:10.7685/j.issn.1000-2030.2011.05.003]
 WANG Shu-min,HOU Xi-lin*,LI Ying,et al.Effects of Turnip mosaic virus(TuMV)on endogenous hormones and transcriptional level of related genes in infected non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(2):13.[doi:10.7685/j.issn.1000-2030.2011.05.003]
[9]苗永美,王万洋,杨海林,等.外源Ca2+、SA和ABA缓解甜瓜低温胁迫伤害的生理作用[J].南京农业大学学报,2013,36(4):25.[doi:10.7685/j.issn.1000-2030.2013.04.005]
 MIAO Yongmei,WANG Wanyang,YANG Hailin,et al.Physiological effects of exogenous Ca2+, SA and ABA in alleviating low temperature stress of melon seedlings[J].Journal of Nanjing Agricultural University,2013,36(2):25.[doi:10.7685/j.issn.1000-2030.2013.04.005]
[10]何莲,李达,钱猛,等.2个烟草品种对镉的耐性差异及外源脱落酸对镉积累的影响[J].南京农业大学学报,2014,37(5):75.[doi:10.7685/j.issn.1000-2030.2014.05.012]
 HE Lian,LI Da,QIAN Meng,et al.The difference of cadmium tolerance and cadmium accumulation in response to abscisic acid in two varieties of Nicotiana tabacum L.[J].Journal of Nanjing Agricultural University,2014,37(2):75.[doi:10.7685/j.issn.1000-2030.2014.05.012]

备注/Memo

备注/Memo:
收稿日期:2017-04-12。
基金项目:国家自然科学基金项目(2012CB114300)
作者简介:宋文敏,硕士研究生。
通信作者:蒋明义,教授,博导,研究方向为植物逆境生理与分子生物学,E-mail:myjiang@njau.edu.cn。
更新日期/Last Update: 1900-01-01