[1]朱经伟,张云贵,李志宏,等.不同土壤改良剂对整治烟田土壤团聚体组成的影响[J].南京农业大学学报,2018,41(2):341-348.[doi:10.7685/jnau.201705012]
 ZHU Jingwei,ZHANG Yungui,LI Zhihong,et al.Effects of different soil amendments on soil aggregate composition from a renovated tobacco field[J].Journal of Nanjing Agricultural University,2018,41(2):341-348.[doi:10.7685/jnau.201705012]
点击复制

不同土壤改良剂对整治烟田土壤团聚体组成的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年2期
页码:
341-348
栏目:
出版日期:
2018-03-27

文章信息/Info

Title:
Effects of different soil amendments on soil aggregate composition from a renovated tobacco field
作者:
朱经伟12 张云贵2 李志宏2 冉传贤3 张恒1 刘青丽2 李雪华4 石俊雄1
1. 贵州省烟草科学研究院, 贵州 贵阳 550081;
2. 中国农业科学院农业资源与农业区划研究所烟草行业 生态环境与烟叶质量重点实验室, 北京 100081;
3. 贵州省烟草公司遵义市公司, 贵州 遵义 563000;
4. 石家庄市藁城区农业技术推广中心, 河北 石家庄 052160
Author(s):
ZHU Jingwei12 ZHANG Yungui2 LI Zhihong2 RAN Chuanxian3 ZHANG Heng1 LIU Qingli2 LI Xuehua4 SHI Junxiong1
1. Guizhou Academy of Tobacco Science, Guiyang 550081, China;
2. Key Laboratory of Eco-environment and Leaf Tobacco Quality, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
关键词:
石灰玉米秸秆玉米秸秆炭土壤团聚体整治烟田
Keywords:
limecorn stalkscarbonized corn stalkssoil aggregaterenovated tobacco field
分类号:
S156.2
DOI:
10.7685/jnau.201705012
摘要:
[目的]探究不同土壤改良剂对整治烟田土壤(黄壤)团聚体组成的影响,旨在为快速改善烟田土壤物理性质提供依据。[方法]设计常规施肥基础上分别配施石灰、玉米秸秆、玉米秸秆炭、石灰+玉米秸秆、石灰+玉米秸秆炭的田间试验,测定土壤水稳定性团聚体粒径分布、土壤团聚体质量、水稳定性土壤团聚体的贡献率等指标。[结果]常规施肥条件下施用石灰或再配施玉米秸秆有利于减少水稳定性团聚体中较小粒径组分的质量分数,玉米秸秆较玉米秸秆炭更适于配施石灰以降低水稳定性大团聚体中小粒径组分的质量分数。在常规施肥条件下,玉米秸秆较玉米秸秆炭更适于配施石灰以提高土壤团聚体阻碍水的破坏作用的能力。与常规施肥(对照)相比,石灰+玉米秸秆处理水稳定性团聚体的平均质量直径和几何平均直径分别显著提高37%~57%和33%~111%,团聚体分形维数分别降低1.1%和0.8%,显著改善了烟田土壤水稳定性团聚体的粒径分布及其稳定性。石灰、玉米秸秆和玉米秸秆炭等对土壤水稳定性团聚体指标的贡献率表明,石灰在玉米秸秆还田快速整治烟田土壤团聚体组成中起主要作用。[结论]常规施肥条件下配施22.5 t·hm-2石灰和15 t·hm-2玉米秸秆能够在短期内促进烟田土壤形成较大粒径团聚体,协调土壤团聚体粒径组分并提高团聚体稳定性,达到改良整治烟田土壤物理性质的效果。
Abstract:
[Objectives]This study was to explore different soil amendments on soil aggregate structure and thus to provide a basis for the rapid improvements of soil physical properties. [Methods]Field experiments were conducted to compare the characteristics of soil aggregate structure under the control of different soil amendments from a renovated tobacco field in Zunyi City with indexes such as particle size distribution,quality of aggregates,contribution rate of water-stable aggregates and so on. The different soil amendments included conventional fertilization,conventional fertilization plus lime,corn stalks,carbonizied corn stalks,and lime+corn stalks,and lime+carbonizied corn stalks. [Results]Under conventional fertilization,lime and lime+corn stalks were more beneficial to reduce mass fraction of small particle size component of water stable aggregate,and corn stalks were more suitable to co-apply with lime than carbonizied of corn stalks to impede the destruction rate of aggregates from water. Application of lime plus corn stalks could significantly increase mean mass diameters and geometrical mean diameters of water stability aggregates by 37%-57% and 33%-111%, and reduced the fractal dimension by 1.1% and 0.8%,respectively,compared to the conventional fertilization. This could significantly improve the size distribution and the structure of the soil aggregate structure from a renovated tobacco field. Through calculated the contribution rate of lime,corn stalks and carbonized corn stalks to the soil aggregates,the application of lime played the leading role in the rapid improvement on aggregate structure in renovated tobacco field with corn stalks returning. [Conclusions]Conventional fertilization incorporated with 22.5 t·hm-2 lime and 15 t·hm-2 corn stalks was beneficial to the formation of large soil aggregates,coordination of the components of soil aggregate size and improve the stability of soil aggregate structure from a renovated tobacco field in short term periods.

参考文献/References:

[1] Gupta V V S R,Germida J J. Soil aggregation:influence on microbial biomass and implications for biological processes[J]. Soil Biology Biochemistry,2015,80:A3-A9.
[2] 朱经伟. 石灰与有机物料对整治烟田的改良研究[D]. 北京:中国农业科学院,2015. Zhu J W. Effects of soil amendment with lime and organic materials on renovated tobacco field[D]. Beijing:Chinese Academy of Agricultural Sciences,2015(in Chinese with English abstract).
[3] 鄢广奎. 名山河流域不同土壤有机碳分布和腐殖质性质研究[D]. 成都:四川农业大学,2012. Yan G K. Research on distribution of organic carbon and humus characteristics between different soil in Mingshan River watershed[D]. Chengdu:Sichuan Agricultural University,2012(in Chinese with English abstract).
[4] Long P,Sui P,Gao W,et al. Aggregate stability and associated C and N in a silty loam soil as affected by organic material inputs[J]. Journal of Integrative Agriculture,2015,14:774-787.
[5] Oades J M. Soil organic matter and structural stability:mechanisms and implications for management[J]. Plant and Soil,1984,76:319-337.
[6] Zong Y,Xiao Q,Lu S. Acidity,water retention,and mechanical physical quality of a strongly acidic ultisol amended with biochars derived from different feedstocks[J]. Journal of Soils and Sediments,2016,16(1):177-190.
[7] Brodowski S,John B,Flessa H,et al. Aggregate-occluded black carbon in soil[J]. European Journal of Soil Science,2006,57:539-546.
[8] Du Z,Zhao J,Wang Y,et al. Biochar addition drives soil aggregation and carbon sequestration in aggregate fractions from an intensive agricultural system[J]. Journal of Soils and Sediments,2017,17:581-589.
[9] Aye N S,Sale P W G,Tang C. The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils[J]. Biology and Fertility of Soils,2016,52:697-709.
[10] Muñoz C,Torres P,Alvear M,et al. Physical protection of C and greenhouse gas emissions provided by soil macroaggregates from a Chilean cultivated volcanic soil[J]. Acta Agriculture Scandinavica,Section B:Soil and Plant Science,2012,62:739-748.
[11] Six J,Elliott E,Paustian K,et al. Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J]. Soil Science Society of America Journal,1998,62:1367-1377.
[12] Chan K,Conyers M,Scott B. Improved structural stability of an acidic hardsetting soil attributable to lime application[J]. Communications in Soil Science and Plant Analysis,2007,38:2163-2175.
[13] 刘光崧. 土壤理化分析与剖面描述[M]. 北京:中国标准出版社,1997. Liu G S. Soil Physical and Chemical Analysis and Description of Soil Profile[M]. Beijing:China Standard Press,1997(in Chinese).
[14] 谭秋锦,宋同清,彭晚霞,等. 峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J]. 应用生态学报,2014,25(3):671-678. Tan Q J,Song T Q,Peng W X,et al. Stability and organic carbon characteristics of soil aggregates under different ecosystems in karst canyon region[J]. Acta Ecologica Sinica,2014,25(3):671-678(in Chinese with English abstract).
[15] 闫峰陵,史志华,蔡崇法,等. 红壤表土团聚体稳定性对坡面侵蚀的影响[J]. 土壤学报,2007,44(4):577-583. Yan F L,Shi Z H,Cai C F,et al. Effects of topsoil aggregate stability on soil erosion at hillslope on ultisoils[J]. Acta Pedologica Sinica,2007,44(4):577-583(in Chinese with English abstract).
[16] 何淑勤,郑子成,宫渊波. 不同退耕模式下土壤水稳性团聚体及其有机碳分布特征[J]. 水土保持学报,2011,25(5):229-233. He S Q,Zheng Z C,Gong Y B. Distribution characteristics and soil organic carbon of soil water-stable aggregate with different de-farming patterns[J]. Soil and Water Conservation in China,2011,25(5):229-233(in Chinese with English abstract).
[17] 杨培岭,罗远培,石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报,1993,38(20):1896-1899. Yang P L,Luo Y P,Shi Y C. Fractal characteristics of soil by weight distribution of particle size[J]. Chinese Science Bulletin,1993,38(20):1896-1899(in Chinese with English abstract).
[18] Marquez C O,Garcia V J,Cambardella C A,et al. Aggregate-size stability distribution and soil stability[J]. Soil Science Society of America Journal,2004,68(3):725-735.
[19] 周刚,赵辉,陈国玉,等. 花岗岩红壤区不同地类土壤抗蚀性分异规律研究[J]. 水土保持学报,2008,22(2):131-134. Zhou G,Zhao H,Chen G Y,et al. Differential rule of soil anti-erodibility in different land-use of granite red soil region[J]. Soil and Water Conservation in China,2008,22(2):131-134(in Chinese with English abstract).
[20] Briedis C,Sá J C M,Caires E F,et al. Soil organic matter pools and carbon-protection mechanisms in aggregate classes influenced by surface liming in a no-till system[J]. Geoderma,2012,170:80-88.
[21] Fornara D A,Steinbeiss S,McNamara N P,et al. Increases in soil organic carbon sequestration can reduce the global warming potential of long-term liming to permanent grassland[J]. Globle Chang Biology,2011,17:1925-1934.
[22] Scott B,Fleming M,Conyers M,et al. Lime improves emergence of canola on an acidic,hardsetting soil[J]. Animal Production Science,2003,43:155-161.
[23] Blackwood C B,Dell C J,Smucker A M,et al. Eubacterial communities in different soil macroaggregate environments and cropping systems[J]. Soil Biology and Biochemistry,2006,38:720-728.
[24] Puttaso A,Vityakon P,Rasche F,et al. Does organic residue quality influence carbon retention in a tropical sandy soil[J]. Soil Science Society of America Journal,2013,77:1001-1011.
[25] 薄国栋,张继光,申国明,等. 秸秆还田对植烟土壤有机质及团聚体特征的影响[J]. 中国烟草科学,2014,35(3):12-16. Bo G D,Zhang J G,Shen G M,et al. Effects of straw returning on soil organic matter and characteristics of soil aggregates in tobacco planting field[J]. Chinese Tobacco Science,2014,35(3):12-16(in Chinese with English abstract).
[26] Abiven S,Menasseri S,Chenu C. The effects of organic inputs over time on soil aggregate stability:a literature analysis[J]. Soil Biology and Biochemistry,2009,41:1-12.
[27] 尚杰,耿增超,赵军,等. 生物炭对塿土水热特性及团聚体稳定性的影响[J]. 应用生态学报,2015,26(7):1969-1976. Shang J,Geng Z C,Zhao J,et al. Effects of biochar on water thermal properties and aggregate stability of Lou soil[J]. Chinese Journal of Applied Ecology,2015,26(7):1969-1976(in Chinese with English abstract).
[28] 吴鹏豹,解钰,漆智平,等. 生物炭对花岗岩砖红壤团聚体稳定性及其总碳分布特征的影响[J]. 草地学报,2012,20(4):643-648. Wu P B,Xie Y,Qi Z P,et al. Effects of biochar on stability and total carbon distribution of aggregates in granitic laterite[J]. Acta Agrestia Sinica,2012,20(4):643-648(in Chinese with English abstract).
[29] Janusauskaite D,Ozeraitiene D,Fullen M A. Distribution of populations of micro-organisms in different aggregate size classes in soil as affected by long-term liming management[J]. Acta Agriculture Scandinavica,Section B:Soil and Plant Science,2009,59:544-551.
[30] 殷大伟. 生物炭改良白浆土的初步研究[D]. 沈阳:沈阳农业大学,2013. Yin D W. Preliminary study on the improvement of albic soil by using biochar[D]. Shenyang:Shenyang Agricultural University,2013(in Chinese with English abstract).

相似文献/References:

[1]张黎骅,陈秋阳,孙圆圆,等.基于响应面法的锤片-齿条式玉米秸秆切揉试验装置的参数优化[J].南京农业大学学报,2011,34(4):122.[doi:10.7685/j.issn.1000-2030.2011.04.022]
 ZHANG Li-hua,CHEN Qiu-yang,SUN Yuan-yuan,et al.Optimization of structural parameters of hammer-rack straw rubbingand breaking machine using response surface method[J].Journal of Nanjing Agricultural University,2011,34(2):122.[doi:10.7685/j.issn.1000-2030.2011.04.022]
[2]夏敏,余明玉,杜瑞卿*,等.配方均匀设计对玉米秸秆代料栽培香菇的配方优化[J].南京农业大学学报,2011,34(4):138.[doi:10.7685/j.issn.1000-2030.2011.04.025]
 XIA Min,YU Ming-yu,DU Rui-qing *,et al.Application of formula uinform design for formula optimization ofcultivating Lentinula edodes with material of corn stalk as substitutes[J].Journal of Nanjing Agricultural University,2011,34(2):138.[doi:10.7685/j.issn.1000-2030.2011.04.025]

备注/Memo

备注/Memo:
收稿日期:2017-05-08。
基金项目:中国烟草总公司遵义市公司科技项目(201104);中国烟草总公司贵州省公司科技项目(201208)
作者简介:朱经伟,硕士,助理研究员。
通信作者:石俊雄,研究员,主要从事烤烟养分管理研究,E-mail:13985409962@163.com。
更新日期/Last Update: 1900-01-01