[1]凌宁,荀卫兵,沈其荣.根际沉积碳与秸秆碳共存下作物与微生物氮素竞争机制及其调控[J].南京农业大学学报,2018,41(4):589-597.[doi:10.7685/jnau.201805045]
 LING Ning,XUN Weibing,SHEN Qirong.Plant-microbial competition for nitrogen in rhizosphere in rhizosphere under straw returning regime:mechanisms and manipulation[J].Journal of Nanjing Agricultural University,2018,41(4):589-597.[doi:10.7685/jnau.201805045]
点击复制

根际沉积碳与秸秆碳共存下作物与微生物氮素竞争机制及其调控()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年4期
页码:
589-597
栏目:
出版日期:
2018-07-09

文章信息/Info

Title:
Plant-microbial competition for nitrogen in rhizosphere in rhizosphere under straw returning regime:mechanisms and manipulation
作者:
凌宁 荀卫兵 沈其荣
南京农业大学江苏省固体有机废弃物资源化高技术研究重点实验室, 江苏 南京 210095
Author(s):
LING Ning XUN Weibing SHEN Qirong
Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
关键词:
根际沉积秸秆还田微生物群落氮素竞争
Keywords:
rhizodepositsstraw amendmentsmicrobial communitycompetition for N
分类号:
S154.3
DOI:
10.7685/jnau.201805045
摘要:
根际沉积碳与秸秆碳输入是植物-土壤-微生物交互作用的纽带,对土壤微生物群落结构和功能具有巨大的影响。然而,这些碳的输入会使氮素发生强烈的生物固持作用,造成土壤微生物与植物之间的氮素竞争。这不仅会对作物生长产生负面影响,而且会改变土壤有机碳氮的稳定性。国内、外前期的研究工作虽对秸秆还田后土壤有机质的周转情况有一定认知,但受传统研究方法局限,并未全面阐述植物源有机碳在作物与微生物氮素竞争以及在土壤微生物群落结构与功能演替过程中的驱动作用。在当前我国大力推荐秸秆全量还田的大背景下,理解全量秸秆还田下作物与微生物氮素竞争机制及其调控途径对建立合理的秸秆还田管理措施、改善土壤有机质稳定性并提高氮素利用率具有重大意义。本文综述了秸秆还田下作物与微生物间的氮素竞争规律,以及根际沉积碳与秸秆碳共存下根际激发效应的发生机制及其生态重要性,同时介绍了根际沉积碳与秸秆碳共存下植物和微生物间氮素竞争的关键微生物菌群研究的主流观点和方法,并提出根际沉积碳与秸秆碳共存下作物与微生物氮素竞争机制及其调控途径,以期为提升作物对氮素的吸收以及土壤中氮素的利用效率,减少传统化学肥料的施用,增加土壤有机质的稳定性提供理论基础。
Abstract:
Rhizodeposit-and straw-carbon(C)inputs steer the plant-soil-microbes interactions and have great impacts on microbial community structure and function. However,these C inputs will cause a strong microbial processed nitrogen(N)immobilization and subsequently enhance N competition between crops and microbes. This can potentially have a negative effect on crop growth and alter the stability of soil organic C(SOC). Although previous studies have largely explored the SOC turnover under straw returning,it is still unable to illuminate the role of plant-derived organic C in the process of the plant-microbe N competition and in the structural and functional successions of soil microbial community. As straw returning is vigorously promoted in China recently,it is crucial to understand the mechanism and regulation measures regarding plant-microbe N competition for a superior straw returning management,and subsequently to improve the stability of SOC and the use efficiency of soil N. This paper reviewed the rule of plant-microbe competion for N under straw-return regime,and the possible mechanism of rhizospheric priming effect under the coexistence of straw-and rhizodeposit-C,and its ecological importance. Meanwhile,we introduced the mainstream viewpoints and methods for identifying the involved microbial species in the process of N competition between crops and microbes under the coexistence of rhizodeposit-and straw-C,and provide a potential manipulation way for improving the plant N uptake and soil N use efficiency and increasing organic matter stability with lower chemical fertilizer input.

参考文献/References:

[1] 祝贞科,沈冰洁,葛体达,等. 农田作物同化碳输入与周转的生物地球化学过程[J]. 生态学报,2016,36(19):5987-5997. Zhu Z K,Shen B J,Ge T D,et al. Biogeochemical processes underlying the input and turnover of crop assimilative carbon in farmland ecosystems[J]. Acta Ecologica Sinica,2016,36(19):5987-5997(in Chinese with English abstract).
[2] Zak D R,Blackwood C B,Waldrop M P. A molecular dawn for biogeochemistry[J]. Trends in Ecology and Evolution,2006,21(6):288-295.
[3] Chen C,Zhang J,Lu M,et al. Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers[J]. Biology and Fertility of Soils,2016,52(4):455-467.
[4] Francioli D,Schulz E,Lentendu G,et al. Mineral vs. organic amendments:microbial community structure,activity and abundance of agriculturally relevant microbes are driven by long-term fertilization strategies[J]. Frontiers in Microbiology,2016,7(289):1-16.
[5] Sun R,Dsouza M,Gilbert J A,et al. Fungal community composition in soils subjected to long-term chemical fertilization is most influenced by the type of organic matter[J]. Environmental Microbiology,2016,18(12):5137-5150.
[6] Sun R B,Zhang X X,Guo X S,et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry,2015,88:9-18.
[7] Loeppmann S,Blagodatskaya E,Pausch J,et al. Substrate quality affects kinetics and catalytic efficiency of exo-enzymes in rhizosphere and detritusphere[J]. Soil Biology and Biochemistry,2016,92:111-118.
[8] Zechmeister-Boltenstern S,Keiblinger K M,Mooshammer M,et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations[J]. Ecological Monographs,2015,85(2):133-155.
[9] Kirkby C A,Kirkegaard J A,Richardson A E,et al. Stable soil organic matter:a comparison of C:N:P:S ratios in Australian and other world soils[J]. Geoderma,2011,163(3):197-208.
[10] Lehtinen T,Schlatter N,Baumgarten A,et al. Effect of crop residue incorporation on soil organic carbon and greenhouse gas emissions in European agricultural soils[J]. Soil Use and Management,2014,30(4):524-538.
[11] Luo Z K,Wang E,Sun O J. Soil carbon change and its responses to agricultural practices in Australian agro-ecosystems:a review and synthesis[J]. Geoderma,2010,155(3):211-223.
[12] Powlson D S,Glendining M J,Coleman K,et al. Implications for soil properties of removing cereal straw:results from long-term studies[J]. Agronomy Journal,2011,103(1):279.
[13] Wang J,Wang X,Xu M,et al. Crop yield and soil organic matter after long-term straw return to soil in China[J]. Nutrient Cycling in Agroecosystems,2015,102(3):371-381.
[14] Zhao J,Tian N,Xun W,et al. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system[J]. Appl Microbiol Biotechnol,2017,101(11):4761-4773.
[15] Nicholson F A,Chambers B J,Mills A R,et al. Effects of repeated straw incorporation on crop fertilizer nitrogen requirements,soil mineral nitrogen and nitrate leaching losses[J]. Soil Use and Management,1997,13(3):136-142.
[16] Blanco-Canqui H,Lal R. Crop residue removal impacts on soil productivity and environmental quality[J]. Critical Reviews in Plant Sciences,2009,28(3):139-163.
[17] Kuzyakov Y,Xu X. Competition between roots and microorganisms for nitrogen:mechanisms and ecological relevance[J]. New Phytologist,2013,198(3):656-669.
[18] Dunn R M,Mikola J,Bol R,et al. Influence of microbial activity on plant-microbial competition for organic and inorganic nitrogen[J]. Plant and Soil,2006,289(1):321-334.
[19] Bardgett R D,Streeter T C,Bol R. Soil microbes compete effectively with plants for organic nitrogen inputs to temperate grasslands[J]. Ecology,2003,84(5):1277-1287.
[20] Schimel J P,Bennett J. Nitrogen mineralization:challenges of a changing paradigm[J]. Ecology,2004,85(3):591-602.
[21] Jones D L. Amino acid biodegradation and its potential effects on organic nitrogen capture by plants[J]. Soil Biology and Biochemistry,1999,31(4):613-622.
[22] Näsholm T,Huss-Danell K,Högberg P. Uptake of organic nitrogen in the field by four agriculturally important plant species[J]. Ecology,2000,81(4):1155-1161.
[23] Wang J G,Bakken L R. Competition for nitrogen during mineralization of plant residues in soil:microbial response to C and N availability[J]. Soil Biology & Biochemistry,1997,29:163-170.
[24] Hodge A,Robinson D,Fitter A. Are microorganisms more effective than plants at competing for nitrogen?[J]. Trends in Plant Science,2000,5(7):304-308.
[25] 丁晶,俞慎. 植物根圈微生物群落与功能特异性机制研究[J]. 生态环境学报,2017,26(5):902-910. Ding J,Yu S. Plant-specificity of microbial community and function in rhizosphere soil[J]. Ecology and Environmental Sciences,2017,26(5):902-910(in Chinese with English abstract).
[26] Guenet B,Neill C,Bardoux G,et al. Is there a linear relationship between priming effect intensity and the amount of organic matter input?[J]. Applied Soil Ecology,2010,46(3):436-442.
[27] Blagodatskaya Е,Kuzyakov Y. Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:critical review[J]. Biology and Fertility of Soils,2008,45(2):115-131.
[28] Kuzyakov Y. Priming effects:interactions between living and dead organic matter[J]. Soil Biology and Biochemistry,2010,42(9):1363-1371.
[29] Cheng W,Parton W J,Gonzalez-Meler M A,et al. Synthesis and modeling perspectives of rhizosphere priming[J]. New Phytologist,2014,201(1):31-44.
[30] Dijkstra F A,Carrillo Y,Pendall E,et al. Rhizosphere priming:a nutrient perspective[J]. Frontiers in Microbiology,2013,4(1):216.
[31] Kuzyakov Y. Review:factors affecting rhizosphere priming effects[J]. Journal of Plant Nutrition and Soil Science,2002,165(4):382-396.
[32] Sullivan B W,Hart S C. Evaluation of mechanisms controlling the priming of soil carbon along a substrate age gradient[J]. Soil Biology and Biochemistry,2013,58(2):293-301.
[33] Cleveland C C,Liptzin D. C:N:P stoichiometry in soil:is there a"Redfield ratio"for the microbial biomass?[J]. Biogeochemistry,2007,85(3):235-252.
[34] Merbach W,Mirus E,Knof G,et al. Release of carbon and nitrogen compounds by plant roots and their possible ecological importance[J]. Journal of Plant Nutrition and Soil Science,1999,162(4):373-383.
[35] Hütsch B W,Augustin J,Merbach W. Plant rhizodeposition:an important source for carbon turnover in soils[J]. Journal of Plant Nutrition and Soil Science,2002,165(4):397-407.
[36] Kuzyakov Y,Siniakina SV,Ruehlmann J,et al. Effect of nitrogen fertilisation on below-ground carbon allocation in lettuce[J]. Journal of the Science of Food and Agriculture,2002,82(13):1432-1441.
[37] Dijkstra F,Pendall E,Mosier A,et al. Long-term enhancement of N availability and plant growth under elevated CO2 in a semi-arid grassland[J]. Functional Ecology,2008,22(6):975-982.
[38] Phillips R P,Bernhardt E S,Schlesinger W H. Elevated CO2 increases root exudation from loblolly pine(Pinus taeda)seedlings as an N-mediated response[J]. Tree Physiology,2009,29(12):1513-1523.
[39] Phillips R P,Finzi A C,Bernhardt E S. Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation[J]. Ecology Letters,2011,14(2):187-194.
[40] Fontaine S,Mariotti A,Abbadie L. The priming effect of organic matter:a question of microbial competition?[J]. Soil Biology and Biochemistry,2003,35(6):837-843.
[41] Bengtson P,Barker J,Grayston S J. Evidence of a strong coupling between root exudation,C and N availability,and stimulated SOM decomposition caused by rhizosphere priming effects[J]. Ecology and Evolution,2012,2(8):1843-1852.
[42] Burns R G,DeForest J L,Marxsen J,et al. Soil enzymes in a changing environment:current knowledge and future directions[J]. Soil Biology and Biochemistry,2013,58(2):216-234.
[43] Craine J M,Morrow C,Fierer N. Microbial nitrogen limitation increases decomposition[J]. Ecology,2007,88(8):2105-2113.
[44] Fontaine S,Henault C,Aamor A,et al. Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect[J]. Soil Biology and Biochemistry,2011,43(1):86-96.
[45] Kuzyakov Y,Friedel J K,Stahr K. Review of mechanisms and quantification of priming effects[J]. Soil Biology and Biochemistry,2000,32(11):1485-1498.
[46] Kuzyakov Y,Cheng W. Photosynthesis controls of CO2 efflux from maize rhizosphere[J]. Plant and Soil,2004,263(1):85-99.
[47] Fu S,Cheng W. Rhizosphere priming effects on the decomposition of soil organic matter in C and C grassland soils[J]. Plant and Soil,2002,238(2):289-294.
[48] 艾超,孙静文,王秀斌,等. 植物根际沉积与土壤微生物关系研究进展[J]. 植物营养与肥料学报,2015,21(5):1343-1351. Ai C,Sun J W,Wang X B,et al. Advances in the study of the relationship between plant rhizodeposition and soil microorganism[J]. Journal of Plant Nutrition and Fertilizer,2015,21(5):1343-1351(in Chinese with English abstract).
[49] 谢志煌,李彦生,于镇华,等. 秸秆还田与作物氮素利用关系研究[J]. 土壤与作物,2016,5(4):261-268. Xie Z H,Li Y S,Yu Z H,et al. Impacts of residue return on nitrogen utilization in crops:a review[J]. Soils and Crops,2016,5(4):261-268(in Chinese with English abstract).
[50] Philippot L,Raaijmakers J M,Lemanceau P,et al. Going back to the roots:the microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology,2013,11(11):789-799.
[51] 孙悦,徐兴良,Yakov K,等. 根际激发效应的发生机制及其生态重要性[J]. 植物生态学报,2014,38(1):62-75. Sun Y,Xu X L,Yakov K,et al. Mechanisms of rhizosphere priming effects and their ecological significance[J]. Chinese Journal of Plant Ecology,2014,38(1):62-75(in Chinese with English abstract).
[52] Blagodatskaya E,Kuzyakov Y. Active microorganisms in soil:critical review of estimation criteria and approaches[J]. Soil Biology and Biochemistry,2013,67(67):192-211.
[53] Joergensen R G,Wichern F. Alive and kicking:why dormant soil microorganisms matter[J]. Soil Biology and Biochemistry,2018,116:419-430.
[54] Nottingham A T,Griffiths H,Chamberlain P M,et al. Soil priming by sugar and leaf-litter substrates:a link to microbial groups[J]. Applied Soil Ecology,2009,42(3):183-190.
[55] Bird J A,Herman D J,Firestone M K. Rhizosphere priming of soil organic matter by bacterial groups in a grassland soil[J]. Soil Biology and Biochemistry,2011,43(4):718-725.
[56] Garcia-Pausas J,Paterson E. Microbial community abundance and structure are determinants of soil organic matter mineralisation in the presence of labile carbon[J]. Soil Biology and Biochemistry,2011,43(8):1705-1713.
[57] Chen R R,Senbayram M,Blagodatsky S,et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology,2014,20(7):2356-2367.
[58] Blagodatskaya E V,Blagodatsky S A,Anderson T H,et al. Priming effects in chernozem induced by glucose and N in relation to microbial growth strategies[J]. Applied Soil Ecology,2007,37(1/2):95-105.
[59] Blagodatskaya E V,Blagodatsky S A,Anderson T H,et al. Contrasting effects of glucose,living roots and maize straw on microbial growth kinetics and substrate availability in soil[J]. European Journal of Soil Science,2009,60(2):186-197.
[60] Pascault N,Ranjard L,Kaisermann A,et al. Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect[J]. Ecosystems,2013,16(5):810-822.
[61] Stenström J,Svensson K,Johansson M. Reversible transition between active and dormant microbial states in soil[J]. FEMS Microbiology Ecology,2001,36(2/3):93.
[62] Radajewski S,Ineson P,Parekh N R,et al. Stable-isotope probing as a tool in microbial ecology[J]. Nature,2000,403(6770):646-649.
[63] 袁红朝,王久荣,刘守龙,等. 稳定碳同位素技术在土壤根际激发效应研究中的应用[J]. 同位素,2018,31(1):57-63. Yuan H Z,Wang J R,Liu S L,et al. Application of stable carbon isotope technique in the research of carbon cycling in soil-plant system[J]. Journal of Isotopes,2018,21(1):57-63(in Chinese with English abstract).
[64] Lu Y,Conrad R. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere[J]. Science,2005,309(5737):1088-1090.
[65] von Bergen M,Jehmlich N,Taubert M,et al. Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology[J]. ISME Journal,2013,7(10):1877-1885.
[66] Fierer N. Embracing the unknown:disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology,2017,15(10):579-590.

相似文献/References:

[1]庞成庆,秦江涛,李辉信.水稻秸秆冬季还田对早稻产量和土壤钾素含量的影响[J].南京农业大学学报,2013,36(3):83.[doi:10.7685/j.issn.1000-2030.2013.03.014]
 PANG Chengqing,QIN Jiangtao,LI Huixin.The effects of rice straw incorporation in winter on yield and soil potassium content[J].Journal of Nanjing Agricultural University,2013,36(4):83.[doi:10.7685/j.issn.1000-2030.2013.03.014]
[2]胡乃娟,张四伟,杨敏芳,等.秸秆还田与耕作方式对稻麦轮作农田土壤碳库及结构的影响[J].南京农业大学学报,2013,36(4):7.[doi:10.7685/j.issn.1000-2030.2013.04.002]
 HU Naijuan,ZHANG Siwei,YANG Minfang,et al.Effects of different tillage and straw return on soil carbon pool and soil structure under rice-wheat rotation system[J].Journal of Nanjing Agricultural University,2013,36(4):7.[doi:10.7685/j.issn.1000-2030.2013.04.002]
[3]刘盼盼,周毅,付光玺,等.基于秸秆还田的小麦-玉米轮作体系施肥效应及其对土壤磷素有效性的影响[J].南京农业大学学报,2014,37(5):27.[doi:10.7685/j.issn.1000-2030.2014.05.005]
 LIU Panpan,ZHOU Yi,FU Guangxi,et al.Effects of fertilization on crop yield and soil phosphorus availablity based on the returning straw[J].Journal of Nanjing Agricultural University,2014,37(4):27.[doi:10.7685/j.issn.1000-2030.2014.05.005]
[4]陆强,王继琛,李静,等.秸秆还田与有机无机肥配施在稻麦轮作体系下对籽粒产量及氮素利用的影响[J].南京农业大学学报,2014,37(6):66.[doi:10.7685/j.issn.1000-2030.2014.06.010]
 LU Qiang,WANG Jichen,LI Jing,et al.Effect of straw returning and combined applications of organic fertilizer and inorganic fertilizer on grain yield and nitrogen utilization under rice-wheat rotation system[J].Journal of Nanjing Agricultural University,2014,37(4):66.[doi:10.7685/j.issn.1000-2030.2014.06.010]
[5]李静,陶宝瑞,焦美玲,等.秸秆还田下我国南方稻田表土固碳潜力研究——基于Meta分析[J].南京农业大学学报,2015,38(3):351.[doi:10.7685/j.issn.1000-2030.2015.03.001]
 LI Jing,TAO Baorui,JIAO Meiling,et al.Assessment on topsoil carbon sequestration potential under straw return modes in paddy fields in South China—based on a Meta-analysis[J].Journal of Nanjing Agricultural University,2015,38(4):351.[doi:10.7685/j.issn.1000-2030.2015.03.001]
[6]杜康,谢源泉,林赵淼,等.秸秆还田条件下氮肥对水稻幼苗生长及养分吸收的影响[J].南京农业大学学报,2016,39(01):18.[doi:10.7685/jnau.201503034]
 DU Kang,XIE Yuanquan,LIN Zhaomiao,et al.Effect of nitrogen on rice seedling growth and nutrient uptake under wheat straw returning[J].Journal of Nanjing Agricultural University,2016,39(4):18.[doi:10.7685/jnau.201503034]
[7]朱冰莹,马娜娜,余德贵.稻麦两熟系统产量对秸秆还田的响应:基于Meta分析[J].南京农业大学学报,2017,40(3):376.[doi:10.7685/jnau.201609036]
 ZHU Bingying,MA Nana,YU Degui.Variation in yield response to straw incorporation in rice-wheat rotation system: Meta-analysis[J].Journal of Nanjing Agricultural University,2017,40(4):376.[doi:10.7685/jnau.201609036]

备注/Memo

备注/Memo:
收稿日期:2018-05-28。
基金项目:国家973计划项目(2015CB150500)
作者简介:凌宁,副教授,研究方向为土壤微生物与有机培肥,E-mail:nling@njau.edu.cn。
通信作者:沈其荣,教授,研究方向为土壤微生物与生物有机肥,E-mail:shenqirong@njau.edu.cn
更新日期/Last Update: 1900-01-01