[1]朱欣果,万洪深,李俊,等.人工合成小麦育种优势的主基因+多基因混合遗传分析[J].南京农业大学学报,2018,41(4):625-632.[doi:10.7685/jnau.201710007]
 ZHU Xinguo,WAN Hongshen,LI Jun,et al.Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat[J].Journal of Nanjing Agricultural University,2018,41(4):625-632.[doi:10.7685/jnau.201710007]
点击复制

人工合成小麦育种优势的主基因+多基因混合遗传分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年4期
页码:
625-632
栏目:
出版日期:
2018-07-09

文章信息/Info

Title:
Mixed major-genes plus polygenes inheritance analysis for breeding superiority in synthetic hexaploid wheat
作者:
朱欣果12 万洪深1 李俊1 郑建敏1 唐宗祥2 杨武云1
1. 四川省农业科学院作物研究所/农业农村部西南地区小麦生物学与遗传育种重点实验室, 四川 成都 610066;
2. 四川农业大学农学院, 四川 成都 611130
Author(s):
ZHU Xinguo12 WAN Hongshen1 LI Jun1 ZHENG Jianmin1 TANG Zongxiang2 YANG Wuyun1
1. Crop Research Institute/Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Ministry of Agriculture and Rural Affairs, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
2. College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
关键词:
人工合成小麦育种优势主基因+多基因混合遗传
Keywords:
synthetic hexaploid wheatbreeding superioritymixed major-genes plus polygenes inheritance
分类号:
S326;S512.1
DOI:
10.7685/jnau.201710007
摘要:
[目的]人工合成小麦是拓宽现代小麦遗传多样性的重要桥梁资源,如何对其高效利用是一个难点。明确人工合成小麦在育种方面的优势及其遗传基础是其育种利用能否成功的关键。[方法]利用P1、P2和RIL群体联合的主基因+多基因混合遗传分析方法,对人工合成小麦‘圆网/节18’与西南麦区育种中间材料‘10单568’构建的RIL群体及其亲本的条锈病成株抗性以及株高、穗长、小穗数、有效分蘖数、穗粒数、千粒质量等产量相关性状进行了分离分析。[结果]条锈病成株抗性受4对加性基因控制,其抗性位点都来自人工合成小麦,其中第1对和第2对基因的加性效应最大;穗粒数由2对基因控制,其中有1对增加穗粒数基因来自人工合成小麦,其加性效应为3.37;有效分蘖数由4对主基因控制,有3对基因的增效位点来自人工合成小麦,第1对基因加性效应达到1.1;4对控制千粒质量的基因中,只有1对效应最小的基因增效位点来自人工合成小麦;在控制株高、穗长和小穗数的基因中,人工合成小麦不含任何增效位点。[结论]人工合成小麦‘圆网/节18’在育种方面的遗传优势主要表现在提高条锈病成株抗性、增加穗粒数以及有效分蘖数,并且受具有较大加性效应的多个主基因控制,为育种工作者制定育种策略提供了理论指导。
Abstract:
[Objectives]Synthetic hexaploid wheat(SHW)is a useful bridge tool to broaden the genetic diversity of modern wheat. However,it is difficult to use it efficiently. To address this issue,it is necessary to dissect their genetic foundation of breeding superiority explicitly.[Methods]A RIL population derived from a SHW accession ‘Yuanwang/AT18’ crossing with the breeding intermediate material ‘10 Dan 568’ of Southwest wheat production region and their parents were used to dissect the genetic foundation of breeding superiority using mixed major-genes plus polygenes inheritance analysis. A total of 7 traits including stripe rust resistance(SRR),plant height(PH),spike length(SL),spikelets per spike(SPS),grains per spike(GPS),thousand grain weight(TGW)and spike per plant(SPP)were investigated in this study.[Results]Among the 4 major genes for SRR,all elite alleles were from SHW,and the 1st and 2nd genes had the strongest additive effect. Among the 2 major genes for GPS,one elite allele with the effect of 3.37 was from SHW. Among the 4 major genes for SPP,three elite alleles were from SHW while the 1st gene had the largest effect of 1.1. Among the 4 genes controlling TGW,only one elite gene with the smallest TGW effect was from SHW. In addition,there were no favor alleles from SHW in PH,SPL and SPS.[Conclusions]The SHW accession ‘Yuanwang/AT18’ obtained its superiority of breeding in enhancing stripe rust resistance,grains per spike and spikes per plant,and this provided theoretical guidance for breeders to define the next breeding target.

参考文献/References:

[1] Wang J R,Luo M C,Chen Z X,et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat[J]. New Phytologist,2013,198(3):925-937.
[2] Mujeeb-Kazi A,Rosas V,Roldan S. Conservation of the genetic variation of Triticum tauschii(Coss.)Schmalh. (Aegilops squarrosa auct. non L.)in synthetic hexaploid wheats(T. turgidum L. s.lat.×T. tauschii;2n=6x=42,AABBDD)and its potential utilization for wheat improvement[J]. Genetic Resources and Crop Evolution,1996,43(2):129-134.
[3] Wan H S,Yang Y M,Li J,et al. Mapping a major QTL for hairy leaf sheath introgressed from Aegilops tauschii and its association with enhanced grain yield in bread wheat[J]. Euphytica,2015,205:275-285.
[4] Yang W Y,Liu D C,Li J,et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China[J]. Journal of Genetics and Genomics,2009,36:539-546.
[5] Li J,Wan H S,Yang W Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes[J]. Journal of Systematics and Evolution,2014,52:735-742.
[6] 林婷婷,王立,张琳,等. 不结球白菜叶绿素含量的主基因+多基因混合遗传分析[J]. 南京农业大学学报,2014,37(5):34-40. DOI:10.7685/j.issn.1000-2030.2014.05.006. Lin T T,Wang L,Zhang L,et al. Genetic analysis of chlorophyll content using mixed major gene plus polygene inheritance model in non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2014,37(5):34-40(in Chinese with English abstract).
[7] 隋益虎,苗永美,胡能兵,等. 辣椒产量性状的遗传分析[J]. 南京农业大学学报,2014,37(4):46-52. DOI:10.7685/j.issn.1000-2030.2014.04.007. Sui Y H,Miao Y M,Hu N B,et al. Genetic analyzing yield traits of chilli pepper[J]. Journal of Nanjing Agricultural University,2014,37(4):46-52(in Chinese with English abstract).
[8] 盖钧镒,章元明,王健康. 植物数量性状遗传体系[M]. 北京:科学出版社,2003. Gai J Y,Zhang Y M,Wang J K. Genetic System of Quantitative Traits in Plants[M]. Beijing:Science Press,2003(in Chinese).
[9] 章元明,盖钧镒,王永军. 利用P1、P2和DH或RIL群体联合分离分析的拓展[J]. 遗传,2001,23(5):467-470. Zhang Y M,Gai J Y,Wang Y J. An expansion of joint segregation analysis of quantitative trait for using P1,P2 and DH or RIL populations[J]. Hereditas,2001,23(5):467-470(in Chinese with English abstract).
[10] 王金社,李海旺,赵团结,等. 重组自交家系群体4对主基因加多基因混合遗传模型分离分析方法的建立[J]. 作物学报,2010,36(2):191-201. Wang J S,Li H W,Zhao T J,et al. Establishment of segregation analysis of mixed inheritance model with four major genes plus polygenes in recombinant inbred lines population[J]. Acta Agronomica Sinica,2010,36(2):191-201(in Chinese with English abstract).
[11] 刘太国,章振羽,刘博,等. 小麦抗条锈病基因Yr26毒性小种的发现及其对我国小麦主栽品种苗期致病性分析[J]. 植物病理学报,2015,45(1):41-47. Liu T G,Zhang Z Y,Liu B,et al. Detection of virulence to Yr26 and pathogenicity to Chinese commercial winter wheat cultivars at seedling stage[J]. Acta Phytopathologica sinica,2015,45(1):41-47(in Chinese with English abstract).
[12] 曹锡文,刘兵,章元明. 植物数量性状分离分析Windows软件包SEA的研制[J]. 南京农业大学学报,2013,36(6):1-6. DOI:10.7685/j.issn.1000-2030.2013.06.001. Cao X W,Liu B,Zhang Y M. SEA:a software package of segregation analysis of quantitative traits in plants[J]. Journal of Nanjing Agricultural University,2013,36(6):1-6(in Chinese with English abstract).
[13] 万洪深. 小麦骨干亲本南大2419产量相关基因组区段的定位及其等位变异的效应[D]. 南京:南京农业大学,2013:108-128 Wan H S. Yield-related genomic regions of founder wheat parent Nanda 2419 and the effects of their allelic variations[D]. Nanjing:Nanjing Agricultural University,2013:108-128(in Chinese with English abstract).
[14] Kumar N,Kulwal P L,Balyan H S,et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat[J]. Molecular Breeding,2007,19:163-177.
[15] Huang X Q,Kempf H,Ganal M W,et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat(Triticum aestivum L.)[J]. Theoretical and Applied Genetics,2004,109:933-943.
[16] 王建康,盖钧镒. 利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并估计其遗传效应[J]. 遗传学报,1997,24(5):432-440. Wang J K,Gai J Y. Identification of major gene and polygene mixed inheritance model and estimation of genetic parameters of a quantitative trait from F2 progeny[J]. Acta Genetica Sinica,1997,24(5):432-440(in Chinese with English abstract).
[17] 章元明. 植物数量遗传学的建立、发展与展望[J]. 南京农业大学学报,2012,35(5):19-24. DOI:10.7685/j.issn.1000-2030.2012.05.003. Zhang Y M. Establishment,development and prospects of quantitative genetics in plant[J]. Journal of Nanjing Agricultural University,2012,35(5):19-24(in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2017-10-24。
基金项目:国家自然科学基金项目(31401382,31401383);国家重点研发计划项目(2016YFD0100102);四川省科技厅项目(2014TD0014,2015JQ0022,2017JY0077)
作者简介:朱欣果,硕士研究生。
通信作者:杨武云,研究员,主要从事小麦遗传育种研究,E-mail:yangwuyun@126.com;唐宗祥,教授,主要从事小麦细胞遗传学研究,E-mail:zxtang@sicau.edu.cn
更新日期/Last Update: 1900-01-01