[1]李傲,崔梦杰,刘众杰,等.葡萄基因组无内含子基因生物信息学及其表达分析[J].南京农业大学学报,2018,41(4):655-661.[doi:10.7685/jnau.201707034]
 LI Ao,CUI Mengjie,LIU Zhongjie,et al.Bioinformatics and expression analysis of the intronless genes of grape genome[J].Journal of Nanjing Agricultural University,2018,41(4):655-661.[doi:10.7685/jnau.201707034]
点击复制

葡萄基因组无内含子基因生物信息学及其表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年4期
页码:
655-661
栏目:
出版日期:
2018-07-09

文章信息/Info

Title:
Bioinformatics and expression analysis of the intronless genes of grape genome
作者:
李傲 崔梦杰 刘众杰 陈立德 贾海峰 上官凌飞 房经贵
南京农业大学园艺学院, 江苏 南京 210095
Author(s):
LI Ao CUI Mengjie LIU Zhongjie CHEN Lide JIA Haifeng SHANGGUAN Lingfei FANG Jinggui
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
葡萄无内含子基因生物信息学亚细胞定位预测功能预测基因表达
Keywords:
grapeintronless genesbioinformaticssubcellular localization predictionfunctional predictiongene expression
分类号:
S663.1
DOI:
10.7685/jnau.201707034
摘要:
[目的]本文旨在研究葡萄(Vitis vinifera)无内含子基因的结构特征、功能以及表达特点。[方法]对葡萄19条染色体上4 906个(占整个基因组的13.8%)无内含子基因情况进行分析,并研究了无内含子基因的亚细胞结构、GO功能类型以及基因在不同组织的表达情况。[结果]葡萄无内含子基因数与每条染色体长度和染色体的基因总数存在正相关关系,每条染色体上无内含子基因占染色体上基因总数的1.2%~1.5%,同时无内含子基因在同一条染色体上的分布是不均匀的,更偏向富集于染色体的两端。葡萄无内含子基因的平均长度为997 bp,比总基因的平均长度短,是总基因长度的1/5。葡萄无内含子基因的亚细胞定位表明,基因产物分布在叶绿体上的数最多,线粒体上几乎没有。基因功能预测结果表明,葡萄无内含子基因主要为生长因子、转录调控、电压门控离子通道以及结构蛋白4种,其中更多参与生长调节。葡萄无内含子基因在不同组织中的表达水平低于有内含子的基因。[结论]葡萄无内含子基因与有内含子基因相比长度较短,表达水平较低。
Abstract:
[Objectives]The aim of this paper is to study the structure,function and expression analysis of grape intronless genes in the era of genomics.[Methods]About 4 906 intronless genes(13.8% of the entire genome)on grape 19 chromosomes are used as experimental materials. The distribution,length,subcellular structure and functional classification of intronless genes and gene expression in different tissues are statistically analyzed by a number of bioinformatics software.[Results]The results showed that the number of intronless genes in grape was positively related to the length of each chromosome and the total number of genes on chromosomes. And the intronless genes accounted for 1.2%-1.5% of the total number of genes on each chromosome. They were not well distributed,and were more enriched at the both ends of chromosomes. The average length of grape intronless genes was 997 bp,shorter than that of the total gene,and was 1/5 of the total genes’ length. Subcellular localization of the intronless genes in grape suggested that the gene products were mostly distributed on the chloroplast,and none on the mitochondrion. Gene functional prediction results showed that grape intronless genes were growth factors,transcription regulation,voltage-gated ion channel and structural proteins,and most of them were involved in growth regulating process. The expressions of intronless genes in different tissues were generally lower than those of intron-containing genes.[Conclusions]The length and expression level of intronless genes are shorter and lower than that of intron-containing genes of grape.

参考文献/References:

[1] Sakharkar M K,Chow V T,Kangueane P. Distributions of exons and introns in the human genome[J]. Silico Biology,2004,4(4):387.
[2] Rogozin I B,Sverdlov A V,Babenko V N,et al. Analysis of evolution of exon-intron structure of eukaryotic genes[J]. Briefings in Bioinformatics,2005,6(2):118.
[3] Shabalina S A,Ogurtsov A Y,Spiridonov A N,et al. Distinct patterns of expression and evolution of intronless and intron-containing mammalian genes[J]. Molecular Biology and Evolution,2010,27(8):1745-1749.
[4] Sang Y M,Liu Q,Lee J,et al. Expansion of amphibian intronless interferons revises the paradigm for interferon evolution and functional diversity[J]. Scientific Reports,2016,6:29072.
[5] Jain M,Khurana P,Tyagi A K,et al. Genome-wide analysis of intronless genes in rice and Arabidopsis[J]. Functional and Integrative Genomics,2008,8(1):69-78.
[6] Louhichi A,Fourati A,Rebaï A. IGD:a resource for intronless genes in the human genome[J]. Gene,2011,488(112):35-40.
[7] Agarwal S M,Gupta J. Comparative analysis of human intronless proteins[J]. Biochemical and Biophysical Research Communications,2005,331(2):512-519.
[8] Sakharkar K R,Sakharkar M K,Culiat C T,et al. Functional and evolutionary analyses on expressed intronless genes in the mouse genome[J]. FEBS Letters,2006,580(5):1472-1478.
[9] Yan H,Zhang W,Lin Y,et al. Different evolutionary patterns among intronless genes in maize genome[J]. Biochemical and Biophysical Research Communications,2014,449(1):146-150.
[10] Aubourg S,Kreis M,Lecharny A. The DEAD box RNA helicase family in Arabidopsis thaliana[J]. Nucleic Acids Research,1999,27(2):628-636.
[11] Gagne J M,Downes B P,Shiu S H,et al. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis[J]. Proc Natl Acad Sci USA,2002,99(17):11519-11524.
[12] Coulombe-Huntington J,Majewski J. Characterization of intron loss events in mammals[J]. Genome Research,2007,17(1):23-32.
[13] Lurin C,Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis[J]. Plant Cell,2004,16(8):2089-2103.
[14] Jain M,Tyagi A K,Khurana J P. Genome-wide analysis,evolutionary expansion,and expression of early auxin-responsive SAUR gene family in rice(Oryza sativa)[J]. Genomics,2006,88(3):360-371.
[15] Jaillon O,Aury J M,Noel B,et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature,2007,449(7161):463.
[16] Zenoni S,Delledonne M. Characterization of transcriptional complexity during berry development in Vitis vinifera using RNA-Seq[J]. Plant Physiology,2010,152(4):1787-1795.
[17] Venturini L,Ferrarini A,Zenoni S,et al. De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity[J]. BioMed Central Genomics,2013,14(1):41.
[18] Fasoli M,Santo D,Zenoni S,et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program[J]. Plant Cell,2012,24(9):3489-3505.
[19] Sakharkar K R,Sakharkar M K,Culiat C T,et al. Functional and evolutionary analyses on expressed intronless genes in the mouse genome[J]. FEBS Letters,2006,580(5):1472-1478.
[20] Zou M,Guo B,He S. The roles and evolutionary patterns of intronless genes in deuterostomes[J]. Comparative and Functional Genomics,2011,2011(4):680673.
[21] Tine M,Kuhl H,Beck A,et al. Comparative analysis of intronless genes in teleost fish genomes:insights into their evolution and molecular function[J]. Journal of Molecular Structure Theochem,2011,4(2):109-119.
[22] Yan H,Jiang C,Li X,et al. PIGD:a database for intronless genes in the Poaceae[J]. BioMed Central Genomics,2014,15(1):832.
[23] Deutsch M,Long M. Intron-exon structures of eukaryotic model organisms[J]. Nucleic Acids Research,1999,27(15):3219.

相似文献/References:

[1]宗成文,章镇,房经贵,等.葡萄LEAFY基因启动子的克隆与序列分析[J].南京农业大学学报,2007,30(4):20.[doi:10.7685/j.issn.1000-2030.2007.04.005]
 ZONG Cheng-wen,ZHANG Zhen,FANG Jing-gui,et al.Cloning and sequence analysis of LEAFY gene promoter from grape(Vitis vinifera×V.labrusca)[J].Journal of Nanjing Agricultural University,2007,30(4):20.[doi:10.7685/j.issn.1000-2030.2007.04.005]
[2]黄非,盛炳成.宿晓红葡萄与葡萄属有关种亲缘关系初探[J].南京农业大学学报,1993,16(04):49.[doi:10.7685/j.issn.1000-2030.1993.04.009]
 Huang Fei Sheng Bingcheng.STUDY ON THE RELATIONSHIP BETWEEN SUXIAOHONG GRAPE AND SOME SPECIES OF VITIS[J].Journal of Nanjing Agricultural University,1993,16(4):49.[doi:10.7685/j.issn.1000-2030.1993.04.009]
[3]周培根,戚晓玉,P.A.Braell,等.葡萄中β-damascenone前体的初步纯化[J].南京农业大学学报,1989,12(03):79.[doi:10.7685/j.issn.1000-2030.1989.03.017]
[4]韩浩章,姜卫兵,费宪进,等.葡萄和油桃自然休眠解除过程中H2O2含量和抗氧化酶活性的变化[J].南京农业大学学报,2007,30(1):50.[doi:10.7685/j.issn.1000-2030.2007.01.010]
 HAN Hao-zhang,JIANG Wei-bing,FEI Xianjin,et al.Changes in H_2O_2 content and activities of antioxidant enzymes of grape and nectarine during natural dormancy-release[J].Journal of Nanjing Agricultural University,2007,30(4):50.[doi:10.7685/j.issn.1000-2030.2007.01.010]
[5]郭磊,上官凌飞,房经贵*,等.葡萄EST鄄SSR 标记的开发及其应用[J].南京农业大学学报,2011,34(4):23.[doi:10.7685/j.issn.1000-2030.2011.04.005]
 GUO Lei,SHANGGUAN Ling-fei,FANG Jing-gui *,et al.Development of SSR markers from grape ESTs and its application[J].Journal of Nanjing Agricultural University,2011,34(4):23.[doi:10.7685/j.issn.1000-2030.2011.04.005]
[6]孙兴民,余智莹,张萌,等.葡萄未成熟胚诱导体细胞胚发生和植株再生与遗传鉴定[J].南京农业大学学报,2012,35(3):13.[doi:10.7685/j.issn.1000-2030.2012.03.003]
 SUN Xing-min,YU Zhi-ying,ZHANG Meng,et al.Somatic embryogenesis from immature zygotic embryos and genetic fidelity identificating of regenerated plants of grapevine[J].Journal of Nanjing Agricultural University,2012,35(4):13.[doi:10.7685/j.issn.1000-2030.2012.03.003]
[7]王晨,张演义,房经贵,等.葡萄microRNA156b和microRNA172c及其靶基因在冬芽二次成花过程中的表达特性研究[J].南京农业大学学报,2012,35(4):59.[doi:10.7685/j.issn.1000-2030.2012.04.011]
 WANG Chen,ZHANG Yan-yi,FANG Jing-gui,et al.Spatiotemporal expression of microRNA156b and microRNA172c and their target genes during flower development of winter buds growing on cut-back treated shoots of grapevine[J].Journal of Nanjing Agricultural University,2012,35(4):59.[doi:10.7685/j.issn.1000-2030.2012.04.011]
[8]王西成,王晨,房经贵,等.葡萄VvGA2ox1基因克隆、亚细胞定位及时空表达分析[J].南京农业大学学报,2013,36(1):29.[doi:10.7685/j.issn.1000-2030.2013.01.006]
 WANG Xicheng,WANG Chen,FANG Jinggui,et al.Cloning,subcellular localization and spatiotemporal expression of VvGA2ox1 gene from grapevine[J].Journal of Nanjing Agricultural University,2013,36(4):29.[doi:10.7685/j.issn.1000-2030.2013.01.006]
[9]谢荔,成学慧,冯新新,等.氨基酸肥料对‘夏黑’葡萄叶片光合特性与果实品质的影响[J].南京农业大学学报,2013,36(2):31.[doi:10.7685/j.issn.1000-2030.2013.02.006]
 XIE Li,CHENG Xuehui,FENG Xinxin,et al.Effects of an amino acid fertilizer on the leaf photosynthesis and fruit quality of ‘Summer Black’grape[J].Journal of Nanjing Agricultural University,2013,36(4):31.[doi:10.7685/j.issn.1000-2030.2013.02.006]
[10]任国慧,上官凌飞,房经贵,等.葡萄DELLA家族成员VvRGA和VvRGL1的预测、验证及生物信息学分析[J].南京农业大学学报,2013,36(3):15.[doi:10.7685/j.issn.1000-2030.2013.03.003]
 REN Guohui,SHANGGUAN Lingfei,FANG Jinggui,et al.The prediction,validation and bioinformatics analysis of the grape DELLA family members about VvRGA and VvRGL1[J].Journal of Nanjing Agricultural University,2013,36(4):15.[doi:10.7685/j.issn.1000-2030.2013.03.003]

备注/Memo

备注/Memo:
收稿日期:2017-07-27。
基金项目:江苏省科技支撑计划项目(BE2013431);南京农业大学青年基金项目(KJ2013013)
作者简介:李傲,硕士研究生。
通信作者:房经贵,教授,主要从事葡萄分子生物学以及基因组学的研究,E-mail:fanggg@njau.edu.cn
更新日期/Last Update: 1900-01-01