[1]韩涛,潘剑君,罗川,等.多时相Sentinel-2A与SPOT-7影像在油菜识别中的差异[J].南京农业大学学报,2018,41(4):691-700.[doi:10.7685/jnau.201711016]
 HAN Tao,PAN Jianjun,LUO Chuan,et al.Differences between multi-temporal Sentinel-2A and SPOT-7 imagery in rape identification[J].Journal of Nanjing Agricultural University,2018,41(4):691-700.[doi:10.7685/jnau.201711016]
点击复制

多时相Sentinel-2A与SPOT-7影像在油菜识别中的差异()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年4期
页码:
691-700
栏目:
出版日期:
2018-07-09

文章信息/Info

Title:
Differences between multi-temporal Sentinel-2A and SPOT-7 imagery in rape identification
作者:
韩涛 潘剑君 罗川 周涛 张培育
南京农业大学资源与环境科学学院, 江苏 南京 210095
Author(s):
HAN Tao PAN Jianjun LUO Chuan ZHOU Tao ZHANG Peiyu
College of Resources and Environmental Sciences, Nanjing 210095, China
关键词:
Sentinel-2ASPOT-7油菜纹理信息小尺度
Keywords:
Sentinel-2ASPOT-7rapetexture informationsmall scale
分类号:
S29
DOI:
10.7685/jnau.201711016
摘要:
[目的]研究多时相Sentinel-2A识别种植结构复杂的小尺度区域中的油菜面积,获取高精度的作物分布信息。[方法]以多时相Sentinel-2A和一景SPOT-7数据为数据源,选取种植结构复杂的小尺度区农业区为研究区,构建不同特征向量组合,利用支持向量机(support vector machine,SVM)的方法提取油菜种植面积。[结果]通过对比分析基于不同特征向量组合的油菜识别精度,利用一景油菜最佳识别期内的Sentinel-2A影像可以得到高达89.1%的制图精度和92.1%的用户精度;添加油菜最佳纹理特征后,多时相Sentinel-2A数据的制图精度与用户精度分别提高了2.9%和2.5%,仅比SPOT-7影像的识别精度低了1.7%和2.1%,2种数据的油菜提取精度差异进一步减小;Sentinel-2A与SPOT-7数据油菜最优分类结果对比后,一致性精度和Kappa系数分别为93.3%和0.89。[结论]多时相Sentinel-2A数据可以很好地识别种植结构复杂地区的油菜,加入最佳纹理信息能够提高油菜的识别精度;Sentinel-2A可以广泛应用于小尺度区域作物分布信息的快速提取。
Abstract:
[Objectives]The study is to explore the ability of Sentinel-2A to identify rape in complex planting areas and the possibility to extract rape with the same high accuracy as high spatial resolution images.[Methods]The study site was the Gaochun District of Nanjing,the capital of Jiangsu Province,China. Multi-temporal Sentinel-2A and one SPOT-7 images were obtained during the flowering stage of rape. Different combinations of spectral and texture information of two images were classified to map rape by using support vector machine,and then classification accuracy achieved using different combinations were evaluated.[Results]When using spectral information only,the producer’s and user’s accuracy of Sentinel-2A were 89.1% and 92.1%,respectively. After adding the best sensitive texture characteristics of rape,the producer’s and user’s accuracy of Multi-temporal Sentinel-2A data increased by 2.9% and 2.5% respectively,which were 1.7% and 2.1% lower than the accuracy of SPOT-7 respectively. By resampling the optimal rape classification results of SPOT-7 to 10 m,and then comparing them with Sentinel-2A,the consistency and Kappa efficiency were 93.3% and 0.89,respectively.[Conclusions]Sentinel-2A data can identify rape in areas with complex planting structure,and the recognition accuracy can be improved after adding the optimum texture information,and Sentinel-2A can replace high resolution image to extract crop area with high accuracy.

参考文献/References:

[1] 王凯,张佳华.基于MODIS数据的湖北省油菜种植分布信息提取[J]. 国土资源遥感,2015,27(3):65-70. Wang K,Zhang J H. Extraction of rape seed cropping distribution information in Hubei Province based on MODIS images[J]. Remote Sensing for Land and Resources,2015,27(3):65-70(in Chinese with English abstract).
[2] 李瑶,张立福,黄长平,等. 基于MODIS植被指数时间谱的太湖2001年-2013年蓝藻爆发监测[J]. 光谱学与光谱分析,2016,36(5):1406-1411. Li Y,Zhang L F,Huang C P,et al. Monitor of cyanobacteria bloom in lake taihu from 2001 to 2013 based on modis temporal spectral data[J]. Spectroscopy and Spectral Analysis,2016,36(5):1406-1411(in Chinese with English abstract).
[3] 周涛,潘剑君,韩涛,等. 基于多时相合成孔径雷达和光学影像数据的冬小麦种植面积提取[J]. 农业工程学报,2017,33(10):215-221. Zhou T,Pan J J,Han T,et al. Combined use of multi-temporal optical and synthetic aperture radar(SAR)imagery for winter wheat mapping in southern China[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(10):215-221(in Chinese with English abstract).
[4] 杨红卫,童小华.中高分辨率影像在农业中的应用现状[J]. 农业工程学报,2012,28(24):138-149. Yang H W,Tong X H. Application status of middle and high resolution remote sensing images in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(24):138-149(in Chinese with English abstract).
[5] 吴炳方,许文波,孙明,等. 高精度作物分布图制作[J]. 遥感学报,2004,8(6):688-695. Wu B F,Xu W B,Sun M,et al. QuickBird imagery for crop pattern mapping[J]. Journal of Remote Sensing,2004,8(6):688-695(in Chinese with English abstract).
[6] 陈君颖,田庆久.高分辨率遥感植被分类研究[J]. 遥感学报,2007,11(2):221-227. Chen J Y,Tian Q J. Vegetation classification based on high-resolution satellite image[J]. Journal of Remote Sensing,2007,11(2):221-227(in Chinese with English abstract).
[7] 胡琼,吴文斌,宋茜,等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学,2015,48(10):1900-1914. Hu Q,Wu W B,Song Q,et al. Recent progresses in research of crop patterns mapping by using remote sensing[J]. Scientia Agricultura Sinica,2015,48(10):1900-1914(in Chinese with English abstract).
[8] Clement A,Felix R. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets[J]. Remote Sensing,2013,5:1335-1354.
[9] Drusch M,Bello U D,Carlier S,et al. Sentinel-2:ESA’s optical high-resolution mission for GMES operational services[J]. Remote Sensing of Environment,2012,120:25-36.
[10] 苏伟,张明政,蒋坤萍,等. Sentinal-2卫星影像的大气校正方法研究[J]. 光学学报,2018,38(1):0128001. Su W,Zhang M Z,Jiang K P,et al. Study on atmospheric correction method of Sentinel-2 image[J]. Acta Optica Sinica,2018,38(1):0128001(in Chinese with English abstract).
[11] Labib S M,Harris A. The potential of Sentinel-2A and Landsat-8 data in green infrastructure extraction,using object based image analysis(OBIA)method[J]. European Journal of Remote Sensing,2018,51(1):231-240.
[12] 郑阳,吴炳方,张淼. Sentinel-2数据的冬小麦地上干生物量估算及评价[J]. 遥感学报,2017,21(2):318-328. Zheng Y,Wu B F,Zhang M. Estimating the above ground biomass of winter wheat using the Sentinel-2 data[J]. Journal of Remote Sensing,2017,21(2):318-328(in Chinese with English abstract).
[13] Nicoleta I,Florian S,Iustina L. Analysis of land cover and land use changes using Sentinel-2 images[J]. Present Environment and Sustainable Development,2016,10(2):161-172.
[14] Giorgos M,Ioannis M,Irene C. Evaluating and comparing Sentinel-2A and Landsat-8 operational land imager(OLI)spectral indices for estimating fire severity in a mediterranean pine ecosystem of Greece[J]. GIScience and Remote Sensing,2018,55(1):1-18.
[15] Lauri K,Hadi,Petteri P,et al. Comparison of Sentinel-2 and Landsat8 in the estimation of boreal forest canopy cover and leaf area index[J]. Remote Sensing of Environment,2017,195:259-274.
[16] 何灵敏,沈掌泉,孔繁胜,等. SVM在多源遥感影像分类中的应用研究[J]. 中国图像图形学报,2007,12(4):648-654. He L M,Shen Z Q,Kong F S,et al. Study on multi-source remote sensing images classification with SVM[J]. Journal of Image and Graphics,2007,12(4):648-654(in Chinese with English abstract).
[17] 骆剑承,周成虎,梁怡,等. 支撑向量机及其遥感影像空间特征提取和分类的应用研究[J]. 遥感学报,2002,6(1):50-55. Luo J C,Zhou C H,Liang Y,et al. Support vector machine for spatial feature extraction and classification of remotely sensed imagery[J]. Journal of Remote Sensing,2002,6(1):50-55(in Chinese with English abstract).
[18] Huang C,Davis L S,Townshend J R G. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing,2002,23(4):725-749.
[19] 王文静,张霞,赵银娣,等. 综合多特征的Landsat8时序遥感图像棉花分类方法[J]. 遥感学报,2017,21(1):115-124. Wang W J,Zhang X,Zhao Y D,et al. Cotton extraction method of integrated multi-features based on multi-temporal Landsat8 images[J]. Journal of Remote Sensing,2017,21(1):115-124(in Chinese with English abstract).
[20] 游炯,裴志远,王飞.基于改进多元纹理模型和GF-1影像的县域冬小麦面积提取[J]. 农业工程学报,2016,32(13):131-139. You J,Pei Z Y,Wang F. Area extraction of winter wheat at county scale based on modified multivariate texture and GF-1 satellite images[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(13):131-139(in Chinese with English abstract).
[21] Liu Q X,Trinder J,Turner L. A comparison of sub-pixel mapping methods for coastal areas[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2016,3(7):67-74.
[22] Haralick R M. Statistical and structural approaches to textures[J]. Proceedings of IEEE,1979,67:786-804.
[23] Zhang Q,Wang J,Gong P,et al. Study of urban spatial patterns from SPOT panchromatic using textural analysis[J]. International Journal of Remote Sensing,2003,24(21):4137-4160.
[24] Shaban M A,Dikshit O. Improvement of classification in urban areas by the use of textural features:the case study in Lucknow City,Uttar Pradesh[J]. International Journal of Remote Sensing,2001,22:565-593.
[25] 邓树斌. ENVI遥感影像处理方法[M]. 北京:高等教育出版社,2014. Deng S B. The Processing Method of Remote Sensing Images in ENVI[M]. Beijing:Higher Education Press,2014(in Chinese).
[26] 姜青香,刘慧平. 利用纹理分析方法提取TM图像信息[J]. 遥感学报,2004,8(5):458-463. Jiang Q X,Liu H P. Extraction TM image information using texture analysis[J]. Journal of Remote Sensing,2004,8(5):458-463(in Chinese with English abstract).
[27] 朱秀芳,贾斌,潘耀忠,等. 不同特征信息对TM尺度冬小麦面积测量精度影响研究[J]. 农业工程学报,2007,23(9):122-129. Zhu X F,Jia B,Pan Y Z,et al. Effects of various feature information on the accuracy of winter wheat planting area measurement[J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23(9):122-129(in Chinese with English abstract).
[28] Mathur A,Foody G M. Crop classification by support vector machine with intelligently selected training data for an operational application[J]. International Journal of Remote Sensing,2008,29(8):2227-2240.
[29] Skakun S,Kuaaul N,Shelestov A Y,et al. Efficiency assessment of multi-temporal C-Bang Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2015,9(8):1-8.

备注/Memo

备注/Memo:
收稿日期:2017-11-08。
基金项目:江苏省高校优势学科建设工程资助项目(PAPD)
作者简介:韩涛,硕士研究生。
通信作者:潘剑君,博导,教授,主要从事土壤调查与评价方面的研究,E-mail:jpan@njau.edu.cn
更新日期/Last Update: 1900-01-01