[1]肖茂华,张存义,傅秀清,等.基于ICEEMDAN和小波阈值的滚动轴承故障特征提取方法[J].南京农业大学学报,2018,41(4):767-774.[doi:10.7685/jnau.201708023]
 XIAO Maohua,ZHANG Cunyi,FU Xiuqing,et al.Fault feature extraction of rolling bearing based on ICEEMDAN and wavelet threshold[J].Journal of Nanjing Agricultural University,2018,41(4):767-774.[doi:10.7685/jnau.201708023]
点击复制

基于ICEEMDAN和小波阈值的滚动轴承故障特征提取方法()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年4期
页码:
767-774
栏目:
出版日期:
2018-07-09

文章信息/Info

Title:
Fault feature extraction of rolling bearing based on ICEEMDAN and wavelet threshold
作者:
肖茂华 张存义 傅秀清 熊龙飞 王月文 封志祥
南京农业大学工学院, 江苏 南京 210031
Author(s):
XIAO Maohua ZHANG Cunyi FU Xiuqing XIONG Longfei WANG Yuewen FENG Zhixiang
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
关键词:
滚动轴承经验模态分解故障特征提取相关系数法小波变换
Keywords:
rolling bearingempirical mode decompositionfault feature extractioncorrelation coefficient methodwavelet transform
分类号:
TH165.3;TH133.3
DOI:
10.7685/jnau.201708023
摘要:
[目的]针对滚动轴承故障信号非线性、非平稳特征导致的故障特征频率难以提取的问题,提出了一种基于改进的带有自适应白噪声的完全集合经验模态分解(ICEEMDAN)和小波阈值降噪的滚动轴承故障特征提取方法。[方法]首先用小波阈值降噪对故障信号进行预处理,然后利用ICEEMDAN对降噪后的信号进行模态分解,产生一系列的固有模态函数(IMF),并根据互相关系数法提取与原信号相关的模态分量,作各层模态分量的包络谱图,提取滚动轴承的故障特征频率。[结果]通过仿真试验与滚动轴承故障试验分析,并将其与集合经验模态分解(EEMD)处理的进行比较,基于ICEEMDAN方法分解后的包络谱幅值更加明显。[结论]本研究提出的方法能精确地提取滚动轴承的故障特征频率。
Abstract:
[Objectives]To effectively extract the nonlinear and non-stationary characteristics of rolling bearing fault signal,a fault diagnosis method of rolling bearing was proposed based on improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)and wavelet threshold denoising method.[Methods]First of all,the fault signal was pro-processed by wavelet threshold denoising method. Then,ICEEMDAN was used to decompose the target signal into a series of intrinsic mode function(IMF). And the valid IMF was extracted based on correlation coefficient method. Next,the envelope spectrum was drawn and the fault characteristics frequency of rolling bearing was extracted.[Results]Through the simulation experiment and rolling bearing fault experiment,the method was compared with ensemble empirical mode decomposition(EEMD). The amplitude of the envelope spectrum after the decomposition based on the ICEEMDAN method was more pronounced.[Conclusions]The results showed that this method can extract the fault characteristics frequency accurately.

参考文献/References:

[1] 耿国盛,周康,肖茂华,等. 拖拉机液压机械无级变速箱的起步特性研究[J]. 南京农业大学学报,2016,39(2):332-340. DOI:10.7685/jnau.201506009. Geng G S,Zhou K,Xiao M H,et al. Research on starting process of hydro-mechanical continuously variable transmission for tractor[J]. Journal of Nanjing Agricultural University,2016,39(2):332-340(in Chinese with English abstract).
[2] 鲁植雄,侯辛奋,邓晓亭. 串联式混合动力拖拉机驱动系统设计匹配与牵引试验[J]. 南京农业大学学报,2017,40(5):928-935. DOI:10.7685/jnau.201702010. Lu Z X,Hou X F,Deng X T. Matching design and traction tests for driving system of series hybrid tractor[J]. Journal of Nanjing Agricultural University,2017,40(5):928-935(in Chinese with English abstract).
[3] 钱林,康敏,王兴盛,等. 基于VMD的自适应形态学在轴承故障诊断中的应用[J]. 振动与冲击,2017,36(3):227-233. Qian L,Kang M,Wang X S,et al. Application of adaptive morphology in bearing fault diagnosis based on VMD[J]. Journal of Vibration and Shock,2017,36(3):227-233(in Chinese with English abstract).
[4] 李志农,朱明,褚福磊,等. 基于经验小波变换的机械故障诊断方法研究[J]. 仪器仪表学报,2014,35(11):2423-2432. Li Z N,Zhu M,Chu F L,et al. Mechanical fault diagnosis method based on empirical wavelet transform[J]. Chinese Journal of Scientific Instrument,2014,35(11):2423-2432(in Chinese with English abstract).
[5] 王书涛,张金敏,李圆圆,等. 基于数学形态学和模糊聚类的旋转机械故障诊断[J]. 仪器仪表学报,2012,33(5):1055-1061. Wang S T,Zhang J M,Li Y Y,et al. Rotating machinery fault diagnosis based on mathematical morpology and fuzzy clustering[J]. Chinese Journal of Scientific Instrument,2012,33(5):1055-1061(in Chinese with English abstract).
[6] 王小兵,孙久运,汤海燕. 一种基于数学形态学与小波域增强的滤波算法[J]. 微电子学与计算机,2012,29(7):64-67. Wang X B,Sun J Y,Tang H Y. A new filter algorithm based on mathematical morphology and wavelet domain enhancement[J]. Microelectronics and Computer,2012,29(7):64-67(in Chinese with English abstract).
[7] Singh D S,Zhao Q. Pseudo-fault signal assisted EMD for fault detection and isolation in rotating machines[J]. Mechanical Systems and Signal Processing,2016,81:202-218.
[8] Liu Z,Sun W,Zeng J. A new short-term load forecasting method of power system based on EEMD and SS-PSO[J]. Neural Computing and Applications,2014,24(3/4):973-983.
[9] 李昌林,孔凡让,黄伟国,等. 基于EEMD和Laplace小波的滚动轴承故障诊断[J]. 振动与冲击,2014,33(3):63-69. Li C L,Kong F R,Huang W G,et al. Rolling bearing fault diagnosis based on EEMD and Laplace wavelet[J]. Journal of Vibration and Shock,2014,33(3):63-69(in Chinese with English abstract).
[10] Torres M E,Colominas M A,Schlotthauer G,et al. A complete ensemble empirical mode decomposition with adaptive noise[C]. Acoustics,Speech and Signal Processing(ICASSP). 2011 IEEE international conference on. IEEE,2011:4144-4147.
[11] 孟宗,李姗姗. 基于小波改进阈值去噪和HHT的滚动轴承故障诊断[J]. 振动与冲击,2013,32(14):204-208. Meng Z,Li S S. Rolling bearing fault diagnosis based on improved wavelet threshold de-noing method and HHT[J]. Journal of Vibration and Shock,2013,32(14):204-208(in Chinese with English abstract).
[12] Colominas M A,Schlotthauer G,Torres M E. Improved complete ensemble EMD:a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control,2014,14:19-29.
[13] Lei Y,Liu Z,Ouazri J,et al. A fault diagnosis method of rolling element bearings based on CEEMDAN[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2017,231(10):1804-1815.
[14] Colominas M A,Schlotthauer G,Torres M E. Complete Ensemble EMD and Hilbert transform for heart beat detection[C]//Braidot A,Hadad A. Ⅵ Latin American Congress on Biomedical Engineering CLAIB 2014. Springer International Publishing Switzerland,2015:496-499.
[15] 赫彬,白艳萍. 基于CEEMDAN小波包的MEMS水听器信号去噪[J]. 数学的实践与认识,2016,46(13):139-147. He B,Bai Y P. MEMS hydrophone signal denoising based on wavelet packet and CEEMDAN[J]. Mathematics in Practice and Theory,2016,46(13):139-147(in Chinese with English abstract).
[16] 王文哲,吴华,王经商,等. 基于CEEMDAN的雷达信号脉内细微特征提取法[J]. 北京航空航天大学学报,2016,42(11):2532-2539. Wang W Z,Wu H,Wang J S,et al. Subtle intrapulse feature extraction based on CEEMDAN for radar signals[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(11):2532-2539(in Chinese with English abstract).
[17] 张会敏,唐贵基. 基于CEEMD和奇异值差分谱的滚动轴承故障特征提取[J]. 电力科学与工程,2016,32(1):37-42. Zhang H M,Tang G J. Feature extraction of rolling bearing fault based on ways of CEEMDAN and difference spectrum singular value[J]. Electric Power Science and Engineering,2016,32(1):37-42(in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2017-08-19。
基金项目:中国博士后科学基金项目(2016M601800);江苏省产学研前瞻性研究项目(BY2015071-02);中央高校基本科研业务费专项资金(KYZ201760)
作者简介:肖茂华,博士,副教授,研究方向为智能制造技术与装备,E-mail:xiaomaohua@njau.edu.cn。
通信作者:肖茂华,博士,副教授,研究方向为智能制造技术与装备,E-mail:xiaomaohua@njau.edu.cn
更新日期/Last Update: 1900-01-01