[1]戴均涛,张慎璞,王暄,等.3种检测番茄抗根结线虫Mi基因分子标记法的比较[J].南京农业大学学报,2018,41(5):848-853.[doi:10.7685/jnau.201712027]
 DAI Juntao,ZHANG Shenpu,WANG Xuan,et al.Comparison of three molecular markers for detecting Mi gene of resistance to root-knot nematode in tomato cultivars[J].Journal of Nanjing Agricultural University,2018,41(5):848-853.[doi:10.7685/jnau.201712027]
点击复制

3种检测番茄抗根结线虫Mi基因分子标记法的比较()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年5期
页码:
848-853
栏目:
出版日期:
2018-09-20

文章信息/Info

Title:
Comparison of three molecular markers for detecting Mi gene of resistance to root-knot nematode in tomato cultivars
作者:
戴均涛1 张慎璞2 王暄1 丁修恒1 李红梅1
1. 南京农业大学植物保护学院/农作物生物灾害综合治理教育部重点实验室, 江苏 南京 210095;
2. 河南农业职业学院, 河南 郑州 451450
Author(s):
DAI Juntao1 ZHANG Shenpu2 WANG Xuan1 DING Xiuheng1 LI Hongmei1
1. College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China;
2. Henan Vocational College of Agriculture, Zhengzhou 451450, China
关键词:
根结线虫Mi基因分子标记基因型抗性评价番茄
Keywords:
root-knot nematodeMi genemolecular markergenotyperesistance evaluationtomato
分类号:
S432.4+5
DOI:
10.7685/jnau.201712027
摘要:
[目的] Mi基因是目前番茄遗传育种及生产实践中应用最为广泛的根结线虫抗源,通过对3种分子标记法检测番茄中Mi基因的结果进行比较与分析,以期为番茄抗根结线虫遗传育种提供准确、高效的分子鉴定方法。[方法]采用酶切扩增多态性序列(CAPS)、引物对组合以及序列特征扩增区(SCAR)3种分子标记法分别检测16个番茄品种的Mi基因及其基因型,同时采用人工接种法测定番茄品种对南方根结线虫的抗、感性。[结果]针对上述品种,3种分子标记法的检测结果存在着明显的差异,CAPS法检测全部供试番茄均含Mi基因,除‘线虫绝39号’外均为Mi/Mi纯合基因型;而PM3Fb/PM3Rb、PMiF3/PMiR3引物对组合检测和SCAR标记Mi23F/Mi23R检测的结果均显示有9个品种含Mi基因,前者检测表明‘VFN’‘双抗265’和‘双抗228’为Mi/Mi纯合基因型,但后者检测则显示仅‘VFN’和‘线虫绝39号’为Mi/Mi纯合基因型。接种测定结果显示:‘VFN’和‘线虫绝3号’为南方根结线虫免疫品种,‘双抗228’‘仙客1号’‘Sparta’和‘线虫绝39号’为高抗品种,‘双抗265’和‘牟番1号’为抗病品种,其余均为感病品种。[结论]CAPS法容易产生假阳性,不适用于番茄Mi基因的检测,而PM3Fb/PM3Rb、PMiF3/PMiR3的引物对组合和SCAR标记Mi23F/Mi23R这2种方法能够相对准确地检测番茄Mi基因,其中SCAR标记经单次PCR反应即可直接鉴定Mi基因的有无及其基因型,应用更为便捷。
Abstract:
[Objectives]The Mi gene is the most widely used genetic resource for resistance to root-knot nematodes in tomato breeding and production practice. In order to provide the molecular techniques for accurate and efficient identificaiton of Mi gene in tomato breeding,three different molecular markers were compared and analysed for the detection of Mi gene in tomato cultivars.[Methods]The Mi gene and its genotype in 16 tomato cultivars were detected using the cleaved amplified polymorphic sequences(CAPS),primer pairs combination and sequence characterized amplified regions(SCAR),respectively. Meanwhile,the resistance of these cultivars to Meloidogyne incognita was evaluated by the artificial inoculation test.[Results]Using three different molecular markers revealed the detection of Mi gene in 16 tomato cultivars showing the appearently differences. The detection by CAPS showed that all cultivars contained Mi gene,and all cultivars,except ‘Xianchongjue 39’,were homozygous genotype of Mi/Mi. The detection by the combination of markers PM3Fb/PM3Rb and PMiF3/PMiR3 and by the SCAR marker of Mi23F/Mi23R both showed that 9 cultivars contained Mi gene. The former one detected ‘VFN’ ‘Shuangkang 265’ and ‘Shuangkang 228’ having homozygous genotype of Mi/Mi,however,the latter one detected ‘VFN’ and ‘Xianchongjue 39’ having homozygous genotype of Mi/Mi. Inoculation test revealed that the cultivars ‘VFN’ and ‘Xianchongjue 3’ were immune to M.incognita, ‘Shuangkang 228’ ‘Xianke 1’ ‘Sparta’ and ‘Xianchongjue 39’ were highly resistant, ‘Shuangkang 265’ and ‘Moufan 1’ were resistant,and the rest cultivars were susceptible.[Conclusions]The detection of CAPS easily producted the false-positive results,which is not suitable for applying in the identification of Mi gene in tomato. The combination of markers PM3Fb/PM3Rb and PMiF3/PMiR3 and the SCAR marker of Mi23F/Mi23R both could be used for detecting the Mi gene in tomato with relatively accuracy. The SCAR marker has the advantage of one step PCR instead of two steps of PCR by the combination markers,therefore it can be directly used for the identificaiton of Mi gene and its genotype in tomato.

参考文献/References:

[1] Abad P,Gouzy J,Aury J M,et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology,2008,26(8):909-915.
[2] Jones J T,Haegeman A,Danchin E G J,et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology,2013,14(9):946-961.
[3] 秦公伟,李文丽,王富.番茄根结线虫的危害与防治[J]. 北方园艺,2006(2):132-133. Qin G W,Li W L,Wang F.The damage and control of tomato root knot nematode[J]. Northern Horticulture,2006(2):132-133(in Chinese).
[4] Williamson V M.Plant nematode resistance genes[J]. Current Opinion in Plant Biology,1999,2(4):327-331.
[5] 彭德良,唐文华.番茄抗根结线虫Mi基因研究进展[J]. 沈阳农业大学学报,2001,32(3):220-223. Peng D L,Tang W H.Advance of resistance gene Mi to root-knot nematodes in tomato[J]. Journal of Shenyang Agricultural University,2001,32(3):220-223(in Chinese with English abstract).
[6] Messeguer R,Ganal M,de Vicente M C,et al. High resolution RFLP map around the root knot nematode resistance gene(Mi)in tomato[J]. Theoretical and Applied Genetics,1991,82(5):529-536.
[7] Williamson V M,Ho J Y,Wu F F,et al. A PCR-based marker tightly linked to the nematode resistance gene,Mi,in tomato[J]. Theoretical and Applied Genetics,1994,87(7):757-763.
[8] El Mehrach K,Gharsallah Chouchane S,Mejia L,et al. PCR-based methods for tagging the Mi1 locus for resistance to root-knot nematode in begomovirus-resistant tomato germplasm[J]. ISHS Acta Horticulture,2005,695:263-270.
[9] Devran Z,G?knur A,Mesci L. Development of molecular markers for the Mi-1 gene in tomato using the KASP genotyping assay[J]. Horticulture Environment and Biotechnology,2016,57(2):156-160.
[10] Garcia B E,Mejia L,Salus M S,et al. A co-dominant SCAR marker,Mi23,for detection of the Mi-1.2 gene for resistance to root-knot nematode in tomato germplasm[J]. Applied Mechanics and Materials,2013,486:323-326.
[11] Devran Z,Ba?k?ylü B,Taner A,et al. Comparison of PCR-based molecular markers for identification of Mi gene[J]. Acta Agriculturae Scandinavica Section B:Soil and Plant Science,2013,63(5):395-402.
[12] 杨树军,夏振远,李天飞,等. 两种生防菌剂对南方根结线虫卵孵化的影响[J]. 西南农业大学学报,2001,23(3):247-248. Yang S J,Xia Z Y,Li T F,et al. Influence of two biocontrol fungus preparations on hatching of rhizosphere nematode eggs[J]. Journal of Southwest Agricultural University,2001,23(3):247-248(in Chinese with English abstract).
[13] Guan T,Shen J,Fa Y,et al. Resistance-breaking population of Meloidogyne incognita utilizes plant peroxidase to scavenge reactive oxygen species,thereby promoting parasitism on tomato carrying Mi-1 gene[J]. Biochemical and Biophysical Research Communications,2017,482(1):1-7.
[14] 韩娜,卓侃,王彬,等. 番茄品种Mi基因对根结线虫抗性的检测[J]. 华南农业大学学报,2011,32(1):19-23. Han N,Zhuo K,Wang B,et al. The detection of resistance of the tomato cultivars with Mi gene to root knot nematodes[J]. Journal of South China Agricultural University,2011,32(1):19-23(in Chinese with English abstract).
[15] 王新荣,郑静君,汪国平,等. 华南地区主要番茄品种对南方根结线虫的抗性评价[J]. 植物保护,2009,35(1):124-126. Wang X R,Zheng J J,Wang G P,et al. Resistance evaluation of tomato varieties to Meloidogyne incognita in Southern China[J]. Plant Protection,2009,35(1):124-126(in Chinese with English abstract).
[16] Li Q,Xie Q G,Smith-Becker J,et al. Mi-1-mediated aphid resistance involves salicylic acid and mitogen-activated protein kinase signaling cascades[J]. Molecular Plant-Microbe Interactions,2006,19(6):655-664.
[17] Bhattarai K K,Xie Q G,Pourshalimi D,et al. Coi1-dependent signaling pathway is not required for Mi-1-mediated potato aphid resistance[J]. Molecular Plant-Microbe Interactions,2007,20(3):276-282.
[18] Hu C,Zhao W,Fan J,et al. Protective enzymes and genes related to the JA pathway are involved in the response to root-knot nematodes at high soil temperatures in tomatoes carrying Mi-1[J]. Horticulture Environment and Biotechnology,2015,56(4):546-554.
[19] 高莹梅,胡靖康,赵婷婷,等. 番茄抗根结线虫Mi-1基因研究进展[J]. 分子植物育种,2017,15(8):3010-3015. Gao Y M,Hu J K,Zhao T T,et al. The progress of studies on Mi-1 gene with resistance to root-knot nematode in tomato(Solanum lycopersicum)[J]. Molecular Plant Breeding,2017,15(8):3010-3015(in Chinese with English abstract).
[20] 阙友雄,宋弦弦,许莉萍,等. 植物与病原真菌互作机制研究进展[J]. 生物技术通讯,2009,20(2):282-285. Kan Y X,Song X X,Xu L P,et al. Research progress on the interaction mechanism between plant and fungi[J]. Letters in Biotechnology,2009,20(2):282-285(in Chinese with English abstract).

相似文献/References:

[1]刘庆安,甘立军,夏凯.茉莉酸甲酯和水杨酸对黄瓜根结线虫的防治[J].南京农业大学学报,2008,31(1):141.[doi:10.7685/j.issn.1000-2030.2008.01.029]
 LIU Qing-an,GAN Li-jun,XIA Kai.Effects of methyl jasmonate and salicylic acid on the control of Meloidogyne spp. in cucumber (Cucumis sativus L.)[J].Journal of Nanjing Agricultural University,2008,31(5):141.[doi:10.7685/j.issn.1000-2030.2008.01.029]
[2]肖同建,陈芳,朱震,等.不同根际细菌对南方根结线虫抑制效果的研究[J].南京农业大学学报,2011,34(4):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]
 XIAO Tong-jian,CHEN Fang,ZHU Zhen,et al.Effect of different rhizobacteria on suppression root-knot nematode (Meloidogyne incognita)of tomato[J].Journal of Nanjing Agricultural University,2011,34(5):59.[doi:10.7685/j.issn.1000-2030.2011.04.011]

备注/Memo

备注/Memo:
收稿日期:2017-12-21。
基金项目:国家自然科学基金项目(31371922)
作者简介:戴均涛,硕士研究生。
通信作者:李红梅,博士,教授,研究方向为植物病原线虫学,E-mail:lihm@njau.edu.cn。
更新日期/Last Update: 1900-01-01