[1]古芸,郑赛,曲峰龙,等.水铁矿对玉米生长及其抗氧化系统的影响[J].南京农业大学学报,2018,41(5):860-866.[doi:10.7685/jnau.201802022]
 GU Yun,ZHENG Sai,QU Fenglong,et al.Effect of ferrihydrite on maize growth and antioxidant system[J].Journal of Nanjing Agricultural University,2018,41(5):860-866.[doi:10.7685/jnau.201802022]
点击复制

水铁矿对玉米生长及其抗氧化系统的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年5期
页码:
860-866
栏目:
出版日期:
2018-09-20

文章信息/Info

Title:
Effect of ferrihydrite on maize growth and antioxidant system
作者:
古芸 郑赛 曲峰龙 王韬略 余光辉 冉炜 沈其荣
南京农业大学资源与环境科学学院/江苏省固体有机废弃物资源化利用高技术研究重点实验室, 江苏 南京 210095
Author(s):
GU Yun ZHENG Sai QU Fenglong WANG Taolue YU Guanghui RAN Wei SHEN Qirong
College of Resources and Environmental Sciences/Jiangsu Provincial Key Laboratory for Solid Organic Waste Utilization, Nanjing 210095, China
关键词:
水铁矿玉米生理生化抗氧化系统质壁分离
Keywords:
ferrihydritemaizephysiological and biochemicalantioxidant systemplasmolysis
分类号:
S145.5
DOI:
10.7685/jnau.201802022
摘要:
[目的]本文旨在研究一种纳米铁氧化物(水铁矿)对玉米相关生理生化指标和抗氧化系统的影响,为水铁矿作为新型铁肥促进玉米生长提供理论依据。[方法]以去离子水(CK1)为对照,用不同质量浓度(10、20、50、100、200和500 mg·L-1)水铁矿溶液进行浸种试验。以不含铁的1/2 Hoagland营养液(CK2)和含EDTA-Fe的1/2 Hoagland营养液(CK3)为2组对照,分别以不含铁的1/2 Hoagland营养液配制不同质量浓度(10、20、50、100、200和500 mg·L-1)的水铁矿溶液进行玉米幼苗培养试验,测定其相关生理生化指标并观察其细胞显微结构。[结果]玉米种子萌发试验结果表明:水铁矿质量浓度为20 mg·L-1时,玉米种子的萌发指数、活力指数和平均根长分别比CK1增加了38.33%、61.99%和53.91%,平均发芽时间缩短56.63%。玉米幼苗培养试验结果表明:水铁矿质量浓度为20 mg·L-1时地上部鲜质量、株高和叶绿素含量分别比CK2显著增加了15.38%、10.03%和24.85%,水铁矿质量浓度高于50 mg·L-1时不利于玉米生长。水铁矿溶液质量浓度低于20 mg·L-1时玉米叶片中过氧化物酶(POD)和过氧化氢酶(CAT)活性逐渐升高,高于此浓度时POD和CAT活性逐渐降低。地上部铁含量检测和透射电镜观察结果显示:水铁矿质量浓度为10 mg·L-1时,水铁矿颗粒能够进入到玉米根细胞内,且地上部铁含量比CK2显著提高了75%,但水铁矿质量浓度大于20 mg·L-1时会造成根细胞质壁分离。[结论]低质量浓度(10~20 mg·L-1)水铁矿可替代EDTA-Fe,有助于玉米种子萌发和植株生长,而高质量浓度(≥ 50 mg·L-1)水铁矿不利于玉米生长。
Abstract:
[Objectives]The research was aimed to study the effect of a nano-iron oxide(ferrihydrite) on maize growth and antioxidant system and to provide theory basis for ferrihydrite used as a new iron fertilizer on maize growth.[Methods]Deionized water(CK1) was set up as control while a series of ferrihydrite,i.e. 10,20,50,100,200 and 500 mg·L-1 were used as treatments during seed germination. Then seedlings were transferred to 1/2 Hoagland solution without iron(CK2) and with EDTA chelated iron(CK3) while a series of ferrihydrite,i.e. 10,20,50,100,200 and 500 mg·L-1 with CK2 solution were used as treatments. The biological and physiological indicators as well as cell micro-morphological structures were determined during maize seed germination and seedling growth.[Results]The seed germination experiment results showed that the germination index,the vigor index and the average root length increased significantly by 38.33%,61.99% and 53.91%,respectively,and the average germination time reduced by 56.63%,when the concentration of ferrihydrite was 20 mg·L-1 as compared with CK1. The seedling growth experiment results showed that the fresh weight of shoot,root of length and chlorophyll content increased significantly by 15.38%,10.03% and 24.85% as compared with the CK2,when the concentration of ferrihydrite was 20 mg·L-1. Concentration higher than 50 mg·L-1 had damaged maize growth. Ferrihydrite concentrations of less than 20 mg·L-1 increased POD and CAT activities in maize leaves. However,the concentrations of more than 20 mg·L-1 led to the gradual reduction of POD and CAT activities. In addition,results of leaf Fe determination and transmission electron microscopy observation showed that ferrihydrite at the concentration of 10 mg·L-1 could enter the root cells of maize and significantly increased the content of iron in shoot by 75% as compared with CK2. However,higher ferrihydrite concentration of more than 20 mg·L-1 resulted in the plasmolysis of root cell.[Conclusions]The promoting effect of ferrihydrite on seed germination and growth of maize seedlings suggested that low lever ferrihydrite(10-20 mg·L-1) could be used as an alternative for EDTA-Fe,whereas high concentrations of ferrihydrite(≥ 50 mg·L-1) damaged maize growth.

参考文献/References:

[1] 刘秀梅,张夫道,冯兆滨,等. 纳米氧化铁对花生生长发育及养分吸收影响的研究[J]. 植物营养与肥料学报,2005,11(4):551-555. Liu X M,Zhang F D,Feng Z B,et al. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut[J]. Plant Nutrition and Fertilizer Science,2005,11(4):551-555(in Chinese with English abstract).
[2] Colombo C,Iorio E D,Liu Q S,et al. Iron oxide nanoparticles in soils:environmental and agronomic importance[J]. J Nanosci Nanotechno,2018,18(1):761.
[3] Rico C M,Majumdar S,Duarte-Gardea M,et al. Interaction of nanoparticles with edible plants and their possible implications in the food chain[J]. J Agric Food Chem,2011,59(8):3485-3498.
[4] Hu J,Guo H Y,Li J L,et al. Comparative impacts of iron oxide nanoparticles and ferric ions on the growth of Citrus maxima[J]. Environ Pollut,2017,221:199-208.
[5] Askary M,Amirjani M R,Saberi T. Comparison of the effects of nano-iron fertilizer with iron-chelate on growth parameters and some biochemical properties of Catharanthus roseus[J]. J Plant Nutr,2016,40(7):974-982.
[6] Alidoust D,Isoda A. Effect of γ-Fe2O3 nanoparticles on photosynthetic characteristic of soybean[Glycine gax(L.)Merr.]:foliar spray versus soil amendment[J]. Acta Physiol Plant,2013,35(12):3365-3375.
[7] Pariona N,Martínez A I,Hernandez-Flores M,et al. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii[J]. Sci Total Environ,2017,575:869-875.
[8] Wang H H,Kou X M,Pei Z G,et al. Physiological effects of magnetite(Fe3O4)nanoparticles on perennial ryegrass(Lolium perenne L.)and pumpkin(Cucurbita mixta)plants[J]. Nanotoxicology,2011,5(1):30-42.
[9] Mushtaq Y K. Effect of nanoscale Fe3O4,TiO2 and carbon particles on cucumber seed germination[J]. Journal of Environmental Science and Health,2011,46(14):1732-1735.
[10] Michel Marc F,Ehm L,Antao S M,et al. The structure of ferrihydrite,a nanocrystalline material[J]. Science,2007,316(5832):1726-1729.
[11] Feizi H,Rezvani M P,Shahtahmassebi N,et al. Impact of bulk and nanosized titanium dioxide(TiO2)on wheat seed germination and seedling growth[J]. Biol Trace Elem Res,2012,146(1):101-106.
[12] 黄玉梅,张杨雪,刘庆林,等. 水杨酸对盐胁迫下百日草种子萌发及幼苗生理特性的影响[J]. 草业学报,2015,24(7):97-105. Huang Y M,Zhang Y X,Liu Q L,et al. Effects of salicylic acid on seed germination and seedling physiological characteristics of Zinnia elegans under salt stress[J]. Acta Prataculturae Sinica,2015,24(7):97-105(in Chinese with English abstract).
[13] Shankramma K,Yallappa S,Shivanna M B,et al. Fe2O3 magnetic nanoparticles to enhance S.lycopersicum(tomato)plant growth and their biomineralization[J]. Appl Nanosci,2015,6(7):983-990.
[14] 王学奎. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2006. Wang X K. Principles and Techniques of Plant Physiology and Biochemistry Experiment[M]. Beijing:Higher Education Press,2006(in Chinese).
[15] Lin D H,Xing B S. Root uptake and phytotoxicity of ZnO nanoparticles[J]. Environ Sci Technol,2008,42(15):5580-5585.
[16] Calvo P,Friston K. Predicting green:really radical(plant)predictive processing[J]. J R Soc Interface,2017,14(131):1-11.
[17] Pottosin I,Zepeda-Jazo I,Bose J,et al. An anion conductance,the essential component of the hydroxyl-radical-induced ion current in plant roots[J]. Int J Mol Sci,2018,19(3):897.
[18] Hiltscher H,Rudnik,Shaikhali J,et al. The radical induced cell death protein 1(RCD1) supports transcriptional activation of genes for chloroplast antioxidant enzymes[J]. Front Plant Sci,2014,5(475):1-14.
[19] Asai S,Yoshioka H. The role of radical burst via MAPK signaling in plant immunity.[J]. Plant Signaling & Behavior,2008,3(11):920-922.
[20] Repka T,Hebbel R P. Hydroxyl radical formation by sickle erythrocyte membranes:role of pathologic iron deposits and cytoplasmic reducing agents[J]. Blood,1991,78(10):2753-2758.
[21] Bhattacharjee S,Chatterjee S,Jiang J J,et al. Detection and imaging of the free radical DNA in cells-site-specific radical formation induced by Fenton chemistry and its repair in cellular DNA as seen by electron spin resonance,immuno-spin trapping and confocal microscopy[J]. Nucleic Acids Res,2012,40(12):5477-5486.
[22] Imam M U,Zhang S,Ma J,et al. Antioxidants mediate both iron homeostasis and oxidative stress[J]. Nutrients,2017,9(7):671.
[23] Wu L B,Ueda Y,Lai S K,et al. Shoot tolerance mechanisms to iron toxicity in rice(Oryza sativa L.)[J]. Plant Cell Environ,2017,40(4):570-584.
[24] Li J,Hu I,Ma C,et al. Uptake translocation and physiological effects of magnetic iron oxide(γ-Fe2O3)nanoparticles in corn(Zea mays L.)[J]. Chemosphere,2016,159:326-334.
[25] Santos F C,Caixeta F,Clemente A C,et al. Gene expression of antioxidant enzymes and coffee seed quality during pre-and post-physiological maturity[J]. Gene Mol Res,2014,13(4):10983-10993.
[26] Wang W B,Kim Y H,Lee H S,et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiol Bioch,2009,47(7):570-577.
[27] Volgger M,Lang I,Ovecka M,et al. Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress[J]. Protoplasma,2010,243(1/2/3/4):51-62.
[28] Martínez-Fernández D,Barroso D,Komárek M. Root water transport of Helianthus annuus L. under iron oxide nanoparticle exposure[J]. Environ Sci Pollut R,2016,23(2):1732-1741.
[29] Ren H X,Liu L,Liu C,et al. Physiological investigation of magnetic iron oxide nanoparticles towards Chinese mung bean[J]. J Biomed Nanotechno,2011,7(5):677-684.

相似文献/References:

[1]王金香,蒋明义,马芳芳,等.玉米促分裂原激活蛋白激酶ZmMPK7基因的表达特性及功能分析[J].南京农业大学学报,2011,34(1):68.[doi:10.7685/j.issn.1000-2030.2011.01.013]
 WANG Jin-xiang,JIANG Ming-yi,MA Fang-fang,et al.Expression characterization and function analysis of ZmMPK7 from Zea mays seedlings[J].Journal of Nanjing Agricultural University,2011,34(5):68.[doi:10.7685/j.issn.1000-2030.2011.01.013]
[2]石明亮,洪德林,薛林,等.玉米新选自交系穗粒重和百粒重的遗传分析[J].南京农业大学学报,2010,33(3):6.[doi:10.7685/j.issn.1000-2030.2010.03.002]
 SHI Ming-liang,HONG De-lin,XUE Lin,et al.Genetic analysis on kernel weight per ear and 100-grain weight of inbred lines newly bred in maize(Zea mays L.)[J].Journal of Nanjing Agricultural University,2010,33(5):6.[doi:10.7685/j.issn.1000-2030.2010.03.002]
[3]宋日,刘利,马丽艳,等.作物根系分泌物对土壤团聚体大小及其稳定性的影响[J].南京农业大学学报,2009,32(3):93.[doi:10.7685/j.issn.1000-2030.2009.03.017]
 SONG Ri,LIU Li,MA Li-yan,et al.Effect of crop root exudates on the size and stability of soil aggregate[J].Journal of Nanjing Agricultural University,2009,32(5):93.[doi:10.7685/j.issn.1000-2030.2009.03.017]
[4]李晶,蒋明义,张阿英,等.H2O2参与低水势下ABA维持玉米初生根的生长[J].南京农业大学学报,2008,31(1):6.[doi:10.7685/j.issn.1000-2030.2008.01.002]
 LI Jing,JIANG Ming-yi,ZHANG A-ying,et al.H_2O_2 is required for abscisic acid-regulated maize primary root growth at low water potentials[J].Journal of Nanjing Agricultural University,2008,31(5):6.[doi:10.7685/j.issn.1000-2030.2008.01.002]
[5]胡彦民,吴欣,李翠香,等.玉米制种花期相关性状的QTL分析[J].南京农业大学学报,2008,31(1):11.[doi:10.7685/j.issn.1000-2030.2008.01.003]
 HU Yan-min,WU Xin,LI Cui-xiang,et al.Genetic analysis on the related traits of florescence for hybrid seed production in maize[J].Journal of Nanjing Agricultural University,2008,31(5):11.[doi:10.7685/j.issn.1000-2030.2008.01.003]
[6]谢振江,张锦芬,Lazar Kojic.中国和南斯拉夫异地育种对南斯拉夫玉米群体改良的效果[J].南京农业大学学报,2001,24(3):6.[doi:10.7685/j.issn.1000-2030.2001.03.002]
 Xie Zhenjiang,Zhang Jinfen,Lazar Kojic.The effect of Yugoslavia maize population improvement through different locational breeding between China and Yugoslavia[J].Journal of Nanjing Agricultural University,2001,24(5):6.[doi:10.7685/j.issn.1000-2030.2001.03.002]
[7]王昭,鞠章纲,卢家栋.玉米群体粒叶比与光合特性及产量的关系[J].南京农业大学学报,1998,21(1):14.[doi:10.7685/j.issn.1000-2030.1998.01.003]
 Wang Zhao,Ju Zhanggang,Lu Jiadong.Grain leaf ratio in relation to photosynthesis and grain yield in maize[J].Journal of Nanjing Agricultural University,1998,21(5):14.[doi:10.7685/j.issn.1000-2030.1998.01.003]
[8]程在全,宋令荣,陈利,等.滇中高原高产玉米群体光合作用及光能利用率的特点[J].南京农业大学学报,1994,17(4):1.[doi:10.7685/j.issn.1000-2030.1994.04.001]
 Cheng Zaiquan,Song Lingrong,Chen Li,et al.CHARACTERISTICS OF PHOTOSYNTHESIS AND PERCENTAGE OF SOLAR ENERGY UTILIZATION RATE OF HIGH-YIELDING MAIZE POPULATION IN MIDDLE YUNNAN PLATEAU[J].Journal of Nanjing Agricultural University,1994,17(5):1.[doi:10.7685/j.issn.1000-2030.1994.04.001]
[9]杨浚,俞炳杲,王万超,等.高产栽培条件下玉米生殖器官对其相邻叶片衰老的影响[J].南京农业大学学报,1994,17(2):12.[doi:10.7685/j.issn.1000-2030.1994.02.003]
 Yang Jun,Yu Binggao,Wang Wanchao,et al.EFFECT OF MAIZE’S REPRODUCTIVE ORGANS ON THEIR ADJACENT LEAF SENESCENCE UNDER HIGH YIELD CONDITION[J].Journal of Nanjing Agricultural University,1994,17(5):12.[doi:10.7685/j.issn.1000-2030.1994.02.003]
[10]俞炳杲,杨浚.滇中玉米抽雄后不同群体叶面积叶绿素和光子通量密度的分布[J].南京农业大学学报,1996,19(2):103.[doi:10.7685/j.issn.1000-2030.1996.02.022]
 Yu Binggao,Yang Jun.LEAF AREA, CHLOROPHYLL AND PHOTON FLUX DENSITY AMONG DIFFERENT POPULATION AFTER CORN TASSELLING IN MIDDLE YUNNAN PLATEAU[J].Journal of Nanjing Agricultural University,1996,19(5):103.[doi:10.7685/j.issn.1000-2030.1996.02.022]

备注/Memo

备注/Memo:
收稿日期:2018-2-13。
基金项目:国家自然科学基金项目(41671294)
作者简介:古芸,硕士研究生。
通信作者:冉炜,研究员,研究方向为土壤肥力与肥料,E-mail:ranwei@njau.edu.cn。
更新日期/Last Update: 1900-01-01