[1]汪影,张昌伟,吕善武,等.大白菜BrCNGC全基因组鉴定及其表达分析[J].南京农业大学学报,2018,41(6):994-1002.[doi:10.7685/jnau.201801037]
 WANG Ying,ZHANG Changwei,LÜ,et al.Genome-wide identification and expression analysis of BrCNGC in Chinese cabbage[J].Journal of Nanjing Agricultural University,2018,41(6):994-1002.[doi:10.7685/jnau.201801037]
点击复制

大白菜BrCNGC全基因组鉴定及其表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年6期
页码:
994-1002
栏目:
出版日期:
2018-11-25

文章信息/Info

Title:
Genome-wide identification and expression analysis of BrCNGC in Chinese cabbage
作者:
汪影 张昌伟 吕善武 侯喜林
南京农业大学作物遗传与种质创新国家重点实验室/农业农村部华东地区 园艺作物生物学与种质创新重点实验室, 江苏 南京 210095
Author(s):
WANG Ying ZHANG Changwei LÜ Shanwu HOU Xilin
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
关键词:
大白菜环核苷酸门控离子通道基因(CNGC)全基因组分析芜菁花叶病毒(TuMV)荧光定量PCR
Keywords:
Chinese cabbagecyclic nucleotide gated ion channel gene(CNGC)genome-wide analysisTurnip mosaic virus(TuMV)quantitative real-time PCR
分类号:
S634.1
DOI:
10.7685/jnau.201801037
文献标志码:
A
摘要:
[目的]本文旨在研究大白菜环核苷酸门控离子通道基因(BrCNGC)的进化关系、结构特征、染色体定位及其表达模式。[方法]通过生物信息技术对大白菜BrCNGC进行分子进化分析、功能结构分析、染色体定位分析、保守结构域分析,并且通过荧光定量PCR分析该基因家族在脱落酸(ABA)+芜菁花叶病毒(TuMV)、水杨酸(SA)+TuMV、茉莉酸甲酯(MeJA)+TuMV和抗坏血酸(AsA)+TuMV处理下的表达差异。[结果]大白菜BrCNGC家族有26个成员,可分为4个组(Ⅰ、Ⅱ、Ⅲ、Ⅳ),其中第Ⅳ组又可以分为2个亚组(Ⅳa和Ⅳb)。它们分布在9条染色体上,1号染色体上BrCNGC数量最多(有5个),5号染色体上只有1个BrCNGC基因,而8号染色体上没有BrCNGC基因分布。基因结构分析表明:该家族基因中共鉴定出10种motif,其中有14个BrCNGC蛋白都包含这10种motif,同组成员之间的motif组成相似。荧光定量PCR结果表明:在植物生长调节剂与TuMV相互作用下,大部分BrCNGC的表达量上调,少数BrCNGC的表达量下调。[结论]大白菜BrCNGC结构高度保守,其在大白菜抵御TuMV侵染过程中发挥一定的作用,该发现为以后进一步研究BrCNGC的功能奠定了基础。
Abstract:
[Objectives] The aim of this study is to investigate the evolutionary relationships, structural features, chromosomal location of the cyclic nucleotide gated ion channel genes in Chinese cabbage (BrCNGC)and to analyze their expression parterns under different treatments. [Methods] The bioinformatics techniques were used to analyze the molecular evolution, genes structure, chromosomal location and conserved motifs of BrCNGC in Chinese cabbage. The expression level of BrCNGC was analyzed by quantitative RT-PCR under different treatments:abscisic acid (ABA)+Turnip mosaic virus (TuMV), salicylic acid (SA)+TuMV, methyl jasmonate (MeJA)+TuMV, and ascorbic acid (AsA)+TuMV. [Results] The results showed that there are 26 BrCNGC genes in Chinese cabbage and can be classified into four major groups (Ⅰ, Ⅱ, Ⅲ, Ⅳ)and two subgroups (Ⅳa and Ⅳb), they were predicted to be located on 9 chromosomes, the chromosome 1 contained five BrCNGC, while the chromosome 5 only contained one BrCNGC and no BrCNGC on chromosome 8. Gene structure analysis showed that 10 kinds of motifs were identified in these genes, 14 BrCNGC proteins contained all of 10 motifs, and the genes that came from the same group shared similar motif composition. The results of quantitative RT-PCR showed that most BrCNGC genes up-regulated and few BrCNGC genes down-regulated by the interaction between plant growth regulator and TuMV. [Conclusions] The structure of BrCNGC in Chinese cabbage is highly conserved and they play a role in the protection against TuMV infection. This finding laid the foundation for the further study on the function of BrCNGC genes.

参考文献/References:

[1] Fesenko E E,Kolesnikov S S,Lyubarsky A L. Induction by cyclic GMP of cationic conductance in plasma membrane of retinal rod outer segment[J]. Nature,1985,313:310-313.
[2] Schuurink R C,Shartzer S F,Fath A,et al. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone[J]. Proc Natl Acad Sci USA,1998,95 (4):1944-1949.
[3] Köhler C,Neuhaus G. Characterization of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana[J]. FEBS Letters,2000,471 (2/3):133-136.
[4] Arazi T,Sunkar R,Kaplan B,et al. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+,tolerance and Pb2+,hypersensitivity in transgenic plants[J]. The Plant Journal,1999,20 (2):171-182.
[5] Talke I N,Blaudez D,Maathuis F J M,et al. CNGCs:prime targets of plant cyclic nucleotide signaling?[J]. Trends in Plant Science,2003,8 (6):286-293.
[6] Mäser P,Thomine S,Schroeder J I,et al. Phylogenetic relationships within cation transporter families of Arabidopsis[J]. Plant Physiology,2001,126 (4):1646-1667.
[7] Kaupp U B,Seifert R. Cyclic nucleotide-gated ion channels[J]. Physiological Reviews,2002,82 (3):769-824.
[8] 王文颖,柴薇薇,马清,等. 植物环核苷酸门控离子通道的研究进展[J]. 植物生理学报,2015,51 (11):1799-1808. Wang W Y,Chai W W,Ma Q,et al. Research advances in cyclic nucleotide-gated channels in plant[J]. Journal of Plant Physiology,2015,51 (11):1799-1808 (in Chinese with English abstract).
[9] Cukkemane A,Seifert R,Kaupp U B. Cooperative and uncooperative cyclic-nucleotide-gated ion channels[J]. Trends in Biochemical Sciences,2011,36 (1):55-64.
[10] Young E C,Krougliak N. Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels[J]. Journal of Biological Chemistry,2004,279 (5):3553-3562.
[11] Gobert A,Park G,Amtmann A,et al. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport[J]. Journal of Experimental Botany,2006,57 (4):791-800.
[12] Sunkar R,Kaplan B,Bouché N,et al. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance[J]. Plant Journal,2000,24 (4):533-542.
[13] Ma W,Ali R,Berkowitz G A. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1,a plant cyclic nucleotide gated cation channel[J]. Plant Physiol Biochem,2006,44 (7):494-505.
[14] Frietsch S,Wang Y F,Sladek C,et al. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen[J]. Proc Natl Acad Sci USA,2007,104 (36):14531-14536.
[15] Ali R,Ma W,Lemtirichlieh F,et al. Death don’t have no mercy and neither does calcium:Arabidopsis cycle nucleotide gated channel-2 and innate immunity[J]. Plant Cell,2007,19 (3):1081-1095.
[16] Yoshioka K,Moeder W,Kang H G,et al. The chimeric Arabidopsis cycle nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses[J]. Plant Cell,2006,18 (3):747-763.
[17] Wang X,Wang H,Wang J,et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nature Genet,2011,43:1035-1039.
[18] Feng C,Liu S,Wu J,et al. BRAD,the genetics and genomics database for Brassica plants[J]. BMC Plant Biology,2011,11:1-6.
[19] Wei T,Zhang C,Hong J,et al. Formation of complexes at plasmodesmata for potyvirus intercellular movement is mediated by the viral protein P3N-PIPO[J]. PLoS Pathogens,2010,6 (6):e1000962.
[20] Pfaf M W. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29 (9):2002-2007.
[21] Zelman A K,Dawe A,Gehring C,et al. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels[J]. Frontiers in Plant Science,2012,3:1-13.
[22] Chin K,Defalco T A,Moeder W et al. Focus issue on calcium signal:the Arabidopsis cyclic nucleotide-gated ion channels AtCNGC2 and AtCNGC4 work in the same signaling pathway to regulate pathogen defense and floral transition[J]. Plant Physiol,2013,163:611-624.
[23] Borsics T,Webb D,Andeme O C,et al. The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana[J]. Planta,2007,225 (3):563-573.
[24] Saand M A,Xu Y P,Li W,et al. Cyclic nucleotide gated channel gene family in tomato:genome-wide identification and functional analyses in disease resistance[J]. Frontiers in Plant Science,2015,6:1-18.
[25] Nawaz Z,Kakar K U,Saand M A,et al. Cyclic nucleotide-gated ion channel gene family in rice,identification,characterization and experimental analysis of expression response to plant hormones,biotic and abiotic stresses[J]. BMC Genomics,2014,15 (1):1-18.
[26] Singh D P,Moore C A,Gilliland A,et al. Activation of multiple antiviral defense mechanisms by salicylic acid[J]. Mol Plant Pathol,2004,5 (1):57-63.
[27] Fujiwara A,Togawa S,Hikawa T,et al. Ascorbic acid accumulates as a defense response to Turnip mosaic virus in resistant Brassica rapa cultivars[J]. Journal of Experimental Botany,2016,67 (14):4391-4402.

相似文献/References:

[1]屈淑平,徐文龙,崔崇士.WRKY33转录因子基因沉默载体的构建[J].南京农业大学学报,2008,31(3):43.[doi:10.7685/j.issn.1000-2030.2008.03.008]
 QU Shu-ping,XU Wen-long,CUI Chong-shi.Construction of gene silencing vector harboring WRKY33 gene[J].Journal of Nanjing Agricultural University,2008,31(6):43.[doi:10.7685/j.issn.1000-2030.2008.03.008]
[2]朱家玲,袁美丽,农秀美,等.大白菜细菌性枯斑病菌的研究[J].南京农业大学学报,1988,11(01):51.[doi:10.7685/j.issn.1000-2030.1988.01.009]
 Zhu Jialing,Yuan Meili,Nong Siumei,et al.BACTERIAL LEAF SPOT OF CHINESE CABBAGE[J].Journal of Nanjing Agricultural University,1988,11(6):51.[doi:10.7685/j.issn.1000-2030.1988.01.009]
[3]董汉松,王金生,方中达.从叶片侵入的大白菜软腐病菌在植株内的系统侵染[J].南京农业大学学报,1987,10(01):46.[doi:10.7685/j.issn.1000-2030.1987.01.009]
 Dong Hansong,Wang Jinsheng,Fang Zhongda.SYSTEMATIC INFECTION OF ERWINIA CAROTOVORA PV.CAROTOVORA DYE AFTER INVADING CHINESE CABBAGE LEAVES[J].Journal of Nanjing Agricultural University,1987,10(6):46.[doi:10.7685/j.issn.1000-2030.1987.01.009]
[4]程斐,李式军,奥岩松,等.大白菜抽薹性状的遗传规律研究[J].南京农业大学学报,1999,22(1):26.[doi:10.7685/j.issn.1000-2030.1999.01.006]
 Cheng Fei,Li Shijun,Ao Yansong,et al.Inheritance of bolting character of Chinese cabbage[J].Journal of Nanjing Agricultural University,1999,22(6):26.[doi:10.7685/j.issn.1000-2030.1999.01.006]
[5]马清华,陈晓峰,牟晋华,等.灰霉菌侵染大白菜后ADF7和ADF10基因表达分析[J].南京农业大学学报,2015,38(5):742.[doi:10.7685/j.issn.1000-2030.2015.05.007]
 MA Qinghua,CHEN Xiaofeng,MU Jinhua,et al.The expression of ADF7 and ADF10 genes after Botrytis cinerea infection in Chinese cabbage[J].Journal of Nanjing Agricultural University,2015,38(6):742.[doi:10.7685/j.issn.1000-2030.2015.05.007]

备注/Memo

备注/Memo:
收稿日期:2018-01-23。
基金项目:国家自然科学基金重点项目(31330067);中央高校基础研究基金项目(KYTZ201401);江苏省蔬菜产业技术体系项目[SXGC(2017)273];国家大宗蔬菜产业技术体系项目(CARS-23-A-06)
作者简介:汪影,硕士研究生。
通信作者:侯喜林,教授,博导,主要从事蔬菜遗传育种研究,E-mail:hxl@njau.edu.cn。
更新日期/Last Update: 2018-11-23