[1]杨康,宋蒙飞,魏庆镇,等.控制黄瓜白绿色果皮基因w的定位和候选基因预测[J].南京农业大学学报,2018,41(6):1003-1008.[doi:10.7685/jnau.201801054]
 YANG Kang,SONG Mengfei,WEI Qingzhen,et al.Mapping and prediction of candidate gene w controlling white-green fruit color in cucumber[J].Journal of Nanjing Agricultural University,2018,41(6):1003-1008.[doi:10.7685/jnau.201801054]
点击复制

控制黄瓜白绿色果皮基因w的定位和候选基因预测()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年6期
页码:
1003-1008
栏目:
出版日期:
2018-11-25

文章信息/Info

Title:
Mapping and prediction of candidate gene w controlling white-green fruit color in cucumber
作者:
杨康 宋蒙飞 魏庆镇 王晶 陈劲枫 娄群峰
南京农业大学作物遗传与种质创新国家重点实验室/园艺学院, 江苏 南京 210095
Author(s):
YANG Kang SONG Mengfei WEI Qingzhen WANG Jing CHEN Jinfeng LOU Qunfeng
State Key Laboratory of Crop Genetics and Germplasm Enhancement/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
黄瓜果皮颜色突变体集群分离分析法高通量测序基因定位
Keywords:
cucumberfruit peel colormutantsbulked segregant analysishigh throughput sequencinggene mapping
分类号:
S642.2
DOI:
10.7685/jnau.201801054
文献标志码:
A
摘要:
[目的]本文旨在通过对黄瓜白绿色果皮性状的研究,为果实性状相关的调控机制以及品种改良提供指导。[方法]以果皮颜色为白绿色的黄瓜自然突变体为材料,与野生型绿色果皮材料杂交、自交构建F2群体,在生理和遗传分析的基础上,利用集群分离分析法(BSA)结合重测序(BSA-seq)的方法来定位控制黄瓜白绿果皮的基因,并通过基因注释、RT-qPCR等方法来验证候选基因。[结果]色素含量分析表明,突变体果皮中叶绿素a和叶绿素b含量均显著低于绿色果实果皮中的含量。遗传分析表明,该白绿色果皮是由单基因控制的隐性性状。BSA-seq分析将候选基因定位于黄瓜3号染色体35.50~37.77 Mb和38.21~39.71 Mb。通过序列比对发现,在2个材料中有5个基因存在Indel的多态性。进一步通过基因表达分析显示,在果实的生长发育过程中,Csa3G904140基因在绿色果实中的表达水平明显高于白绿色果实。在白绿色突变体3号染色体Csa3G904140基因上1个单核苷酸插入造成终止密码子提前,导致101氨基酸残基的缺失。综合分析确定Csa3G904140是控制黄瓜白绿色果实颜色的候选基因。[结论]利用BSA和基因组重测序相结合的方法成功定位了控制黄瓜果实白绿色果皮的基因。
Abstract:
[Objectives] Fruit related traits are the important target traits of variety improvement, and the fruit color is an important feature. The identification of genes controlling fruit color can provide guidance for the improvement of the fruit character. [Methods] A natural white-green fruit color mutant was crossed with the wild type green fruit color material, to construct F2 population. Then after physiological and genetic analysis, the method of bulked segregant analysis (BSA)combining with resequencing BSA-seq was employed to map the corresponding genes controlling the white-green fruit color. Further, gene annotation and RT-qPCR were applied to verify the candidate gene. [Results] The pigment content analysis result showed that the contents of chlorophyll a and chlorophyll b in the white-green fruit peel was significantly lower than that in the green fruit peel. Genetic analysis result showed that the white-green fruit color was a recessive trait controlled by a single gene. BSA-seq results showed that the candidate genes were mapped on the regions of 35.50-37.77 Mb and 38.21-39.71 Mb on chromosome 3. Sequence alignment results revealed that there are five Indel polymorphic gene loci between two materials. Further, the expression analysis showed that the expression level of Csa3G904140 gene in green fruit was obviously higher than that of white green fruit during the growth of fruit. And a single nucleotide insertion in Csa3G904140 gene in white-green material caused the termination of codon, resulting in the deletion of 101 amino acid residues in the gene. Based on these results, Csa3G904140 was identified as a candidate gene controlling the color of white-green fruit of cucumber. [Conclusions] The gene for controlling the white green fruit peel of cucumber fruit was successfully located by the combination of BSA and genome sequencing.

参考文献/References:

[1] Huang S,Li R,Zhang Z,et al. The genome of the cucumber,Cucumis sativus L.[J]. Nature Genetics,2009,41 (12):1275-1281.
[2] Song M,Wei Q,Wang J,et al. Fine mapping of CsVYL,conferring virescent leaf through the regulation of chloroplast development in cucumber[J]. Frontiers in Plant Science,2018,9:432.
[3] Li Z,Wang S,Tao Q,et al. A putative positive feedback regulation mechanism in CsACS2 expression suggests a modified model for sex determination in cucumber (Cucumis sativus L.)[J]. Journal of Experimental Botany,2012,63 (12):4475-4484.
[4] Shang Y,Ma Y,Zhou Y,et al. Biosynthesis,regulation,and domestication of bitterness in cucumber[J]. Science,2014,346:1084.
[5] Yang X,Zhang W,He H,et al. Tuberculate fruit gene Tu encodes a C2H2 zinc finger protein that is required for the warty fruit phenotype in cucumber (Cucumis sativus L.)[J]. Plant Journal for Cell & Molecular Biology,2014,78 (6):1034-1046.
[6] 王建科,方小雪,李雪红,等. 黄瓜嫩果皮颜色的遗传研究[J]. 园艺学报,2013,40 (3):479-486. Wang J K,Fang X X,Li X H,et al. Genetic studies on the color of cucumber tender peel[J]. Acta Horticulturae Sinica,2013,40 (3):479-486 (in Chinese with English abstract).
[7] Xie J. Gene list 2001 for cucumber[J]. Cucurbit Genetics Cooperative Report,2001,24:110-136.
[8] 孙晓丹,商庆梅,秦智伟. 黄瓜嫩果白色果皮颜色遗传规律及其AFLP标记研究[J]. 北方园艺,2011 (3):135-140. Sun X D,Shang Q M,Qin Z W. Study on the genetic rule of white fruit color of cucumber and its AFLP markers[J]. Northern Horticulture,2011 (3):135-140 (in Chinese).
[9] 董邵云,苗晗,张圣平,等. 黄瓜白色果皮基因遗传规律及定位研究[J]. 西北植物学报,2012,32 (11):2177-2181. Dong S Y,Miao H,Zhang S P,et al. Genetic rule and location of cucumber white peel gene[J]. Acta Botanica Boreali-Occidentalia Sinica,2012,32 (11):2177-2181 (in Chinese with English abstract).
[10] Liu H,Meng H,Pan Y,et al. Fine genetic mapping of the white immature fruit color gene w,to a 33.0-kb region in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2015,128 (12):2375-2385.
[11] Liu H,Jiao J,Liang X,et al. Map-based cloning,identification and characterization of the w gene controlling white immature fruit color in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics,2016,129 (7):1247-1256.
[12] 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社,2000. Li H S. Principle and Technology of Plant Physiological and Biochemical Experiment[M]. Beijing:Higher Education Press,2000 (in Chinese).
[13] Schneeberger K,Ossowski S,Lanz C,et al. SHOREmap:simultaneous mapping and mutation identification by deep sequencing[J]. Nature Methods,2009,6 (8):550.
[14] Michelmore R W,Paran I,Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci USA,1991,88 (21):9828-9832.
[15] Abe A,Kosugi S,Yoshida K,et al. Genome sequencing reveals agronomically important loci in rice using MutMap[J]. Nature Biotechnology,2012,30 (2):174.
[16] 白凤虎,李德芳,陈安国,等. 基于BSA分析法的分子标记基因定位技术在农作物中的应用[J]. 中国麻业科学,2006,28 (6):282-288. Bai F H,Li D F,Chen A G,et al. The application of the molecular gene localization technique based on BSA in crop[J]. Plant Fiber Sciences in China,2006,28 (6):282-288 (in Chinese with English abstract).
[17] Borevitz J O,Xia Y,Blount J,et al. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis[J]. The Plant Cell,2000,12 (12):2383-2393.
[18] Feller A,Machemer K,Braun E L,et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors[J]. Plant Journal,2011,66 (1):94-116.
[19] Singh R,Low E T L,Ooi C L,et al. The oil palm VIRESCENS gene controls fruit colour and encodes a R2R3-MYB[J]. Nature Communications,2014,5:4106.
[20] Han S E,Lee H E,Heo S,et al. Isolation and characterization of genes expressed differently in mature fruits of ‘Redfield’ and ‘Greensleeves’ apples[J]. Hort Environ Biotechnol,2011,52 (4):413-421.
[21] Kayesh E,Shangguan L,Korir N K,et al. Fruit skin color and the role of anthocyanin[J]. Acta Physiologiae Plantarum,2013,35 (10):2879-2890.
[22] Lu S,van Eck J,Zhou X J,et al. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation[J]. The Plant Cell,2006,18 (12):1-12.
[23] Beale S I. Enzymes of chlorophyll biosynthesis[J]. Photosynthesis Research,1999,60 (1):43-73.
[24] Beale S I. Green genes gleaned[J]. Trends in Plant Science,2005,10 (7):309-312.
[25] Pan Y,Bradley G,Pyke K,et al. Network inference analysis identifies an APRR2-like gene linked to pigment accumulation in tomato and pepper fruits[J]. Plant Physiology,2013,161 (3):1476-1485.
[26] Brand A,Borovsky Y,Meir S,et al. pc8.1,a major QTL for pigment content in pepper fruit,is associated with variation in plastid compartment size[J]. Planta,2012,235 (3):579-588.
[27] Barry C S,Aldridge G M,Herzog G. Altered chloroplast development and delayed fruit ripening caused by mutations in a zinc metalloprotease at the lutescent2 locus of tomato[J]. Plant Physiology,2012,159 (3):1086-1098.

相似文献/References:

[1]薄凯亮,沈佳,钱春桃,等.‘ 北京截头’× 西双版纳黄瓜重组自交系群体重要农艺性状的遗传分析[J].南京农业大学学报,2011,34(3):20.[doi:10.7685/j.issn.1000-2030.2011.03.004]
 BO Kai-liang,SHEN Jia,QIAN Chun-tao,et al.Genetic analysis of the important agronomic traits on ‘Beijingjietou’× Xishuangbanna cucumber recombinant inbred lines[J].Journal of Nanjing Agricultural University,2011,34(6):20.[doi:10.7685/j.issn.1000-2030.2011.03.004]
[2]史建磊,娄群峰,钱春桃,等.黄瓜染色体片段导入系的构建与遗传评价[J].南京农业大学学报,2011,34(1):20.[doi:10.7685/j.issn.1000-2030.2011.01.004]
 SHI Jian-lei,LOU Qun-feng,QIAN Chun-tao,et al.Construction and genetic evaluation of chromosome segment introgression lines in cucumber[J].Journal of Nanjing Agricultural University,2011,34(6):20.[doi:10.7685/j.issn.1000-2030.2011.01.004]
[3]魏跃,陈啸寅,李振陆,等.黄瓜6磷酸葡萄糖酸脱氢酶基因cDNA片段的克隆及表达分析[J].南京农业大学学报,2010,33(1):37.[doi:10.7685/j.issn.1000-2030.2010.01.008]
 WEI Yue CHEN Xiao-yin,LI Zhen-lu,WANG Yong-ping,et al.Cloning of 6-phosphogluconate dehydrogenase gene cDNA fragments from cucumber and expression analysis[J].Journal of Nanjing Agricultural University,2010,33(6):37.[doi:10.7685/j.issn.1000-2030.2010.01.008]
[4]李为观,杨寅桂,魏跃,等.热胁迫下黄瓜幼苗生理生化指标变化及CSHSP70基因表达[J].南京农业大学学报,2010,33(3):47.[doi:10.7685/j.issn.1000-2030.2010.03.009]
 LI Wei-guan,YANG Yin-gui,WEI Yue,et al.Expression of CSHSP_{70} gene and changes of some physiological characters in cucumber seedlings during heat stress[J].Journal of Nanjing Agricultural University,2010,33(6):47.[doi:10.7685/j.issn.1000-2030.2010.03.009]
[5]娄丽娜,陈劲枫,钱春桃,等.利用胚培养诱导单性结实黄瓜果实形成单倍体植株的研究[J].南京农业大学学报,2009,32(2):30.[doi:10.7685/j.issn.1000-2030.2009.02.007]
 LOU Li-na,CHEN Jin-feng,QIAN Chun-tao,et al.Recovery of cucumber (Cucumis sativus L.)haploid plants through embryo culture in parthenocarpic cucumber fruits[J].Journal of Nanjing Agricultural University,2009,32(6):30.[doi:10.7685/j.issn.1000-2030.2009.02.007]
[6]耿贝贝,郭强,师慈,等.低浓度蔗糖对黄瓜下胚轴不定根发生有诱导作用[J].南京农业大学学报,2009,32(3):157.[doi:10.7685/j.issn.1000-2030.2009.03.029]
 GENG Bei-bei,GUO Qiang,SHI Ci,et al.Adventitious rooting of cucumbers(Cucumis sativus L.)induced by low concentration of sucrose[J].Journal of Nanjing Agricultural University,2009,32(6):157.[doi:10.7685/j.issn.1000-2030.2009.03.029]
[7]刁卫平,陈劲枫,雷春,等.影响黄瓜未授粉子房培养胚发生因素的研究[J].南京农业大学学报,2008,31(1):137.[doi:10.7685/j.issn.1000-2030.2008.01.028]
 DIAO Wei-ping,CHEN Jin-feng,LEI Chun,et al.Factors affecting embryo formation in unpollinated ovary culture of cucumber[J].Journal of Nanjing Agricultural University,2008,31(6):137.[doi:10.7685/j.issn.1000-2030.2008.01.028]
[8]张鹏,王飞,张列峰,等.黄瓜叶片生长期间内肽酶活性和同工酶变化及其生化特性[J].南京农业大学学报,2007,30(2):49.[doi:10.7685/j.issn.1000-2030.2007.02.010]
 ZHANG Peng,WANG Fei,ZHANG Lie-feng,et al.Study on endopeptidase isoenzymes and their characters in cucumber leaf development period[J].Journal of Nanjing Agricultural University,2007,30(6):49.[doi:10.7685/j.issn.1000-2030.2007.02.010]
[9]钱春桃,陈劲枫,罗向东.黄瓜抗枯萎病异源易位植株AT-04的鉴定筛选[J].南京农业大学学报,2006,29(2):20.[doi:10.7685/j.issn.1000-2030.2006.02.005]
 QIAN Chun-tao,CHEN Jin-feng,LUO Xiang-dong.Identification and characterization of cucumber alien translocation plant AT-04 with resistance to fusarium wilt[J].Journal of Nanjing Agricultural University,2006,29(6):20.[doi:10.7685/j.issn.1000-2030.2006.02.005]
[10]乔勇进,冯双庆,李丽萍,等.热处理对黄瓜贮藏冷害及内源多胺含量的影响[J].南京农业大学学报,2005,28(3):34.[doi:10.7685/j.issn.1000-2030.2005.03.008]

备注/Memo

备注/Memo:
收稿日期:2018-01-31。
基金项目:国家自然科学基金项目(31772318);国家重点研发计划项目子课题(2016YFD0100204-25);江苏省农业科技自主创新项目[CX(17)3016];江苏高校"青蓝工程"人才项目
作者简介:杨康,硕士研究生。
通信作者:娄群峰,教授,从事葫芦科作物遗传育种与种质创新研究,E-mail:qflou@njau.edu.cn。
更新日期/Last Update: 2018-11-23