[1]Tanzeela Zia,陈书林,丰瑞英,等.柑橘黄龙病菌与寄主互作过程中4个小RNA的检测及功能分析[J].南京农业大学学报,2018,41(6):1029-1036.[doi:10.7685/jnau.201712039]
 Tanzeela Zia,CHEN Shulin,FENG Ruiying,et al.Detection and functional analysis of four small RNA associated with citrus Huanglongbing(HLB)[J].Journal of Nanjing Agricultural University,2018,41(6):1029-1036.[doi:10.7685/jnau.201712039]
点击复制

柑橘黄龙病菌与寄主互作过程中4个小RNA的检测及功能分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年6期
页码:
1029-1036
栏目:
出版日期:
2018-11-25

文章信息/Info

Title:
Detection and functional analysis of four small RNA associated with citrus Huanglongbing(HLB)
作者:
Tanzeela Zia1 陈书林1 丰瑞英1 程保平2 赵弘巍1
1. 南京农业大学植物保护学院, 江苏 南京 210095;
2. 广东省农业科学院植物保护研究所/广东省植物保护新技术重点实验室, 广东 广州 510640
Author(s):
Tanzeela Zia1 CHEN Shulin1 FENG Ruiying1 CHENG Baoping2 ZHAO Hongwei1
1. College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
2. Plant Protection Research Institute/Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
关键词:
柑橘黄龙病小RNA检测基因沉默基因表达
Keywords:
citrus Huanglongbingdetection of small RNARNA silencinggene expression
分类号:
S412
DOI:
10.7685/jnau.201712039
文献标志码:
A
摘要:
[目的]柑橘小RNA不仅是黄龙病抗性的调控因子,也可以开发成为黄龙病早期诊断的分子标记。本研究旨在探明小RNA在柑橘黄龙病与寄主互作中的作用。[方法]分别设计并合成了4个小RNA的反转录茎环引物以及相应的表达检测引物;利用实时荧光定量PCR对引物的特异性和扩增效率进行了测试;进一步检测分析了4个小RNA对靶标基因表达的调控情况。[结果]利用本研究设计的引物在健康样品和黄龙病发病样品中均可特异性检测到4个小RNA。相对定量标准曲线斜率表明,4个小RNA引物的扩增效率相近。表达量的相对定量分析表明:4个小RNA的表达与相应靶标基因的表达均呈负相关性;miR-753E-3p、miR-451b、miR2633和miR838-3p在发病样品中的表达量分别为健康对照样品中的4.69、0.44、0.36和3.08倍,而其靶标Cs6g21280、Cs6g05770、Cs2g08190Cs8g02530在发病样品中的表达量分别为对照的0.14、8.95、3.06和0.29倍。进一步分析表明:这些小RNA的靶标基因在拟南芥中均存在同源基因:Cs6g21280在拟南芥中的同源基因为ATSMC4,与抑制开花和抑制逆境相关的DNA修复有关;Cs6g05770在拟南芥中的同源基因为BAK1,与病原特征分子诱导的抗病反应有关;Cs2g08190在拟南芥中的同源基因为CIPK23,与促进钾离子吸收、扩大叶片的气孔开度有关;Cs8g02530在拟南芥中的同源基因为PIP2,是一个水通道蛋白,可调节植物耐涝耐旱性。[结论]本研究揭示了黄龙病菌与柑橘在小RNA水平上发生的侵染与防卫的对抗作用,为黄龙病病症形成以及寄主免疫相关分子机制的研究提供了新的线索。
Abstract:
[Objectives] Citrus Huanglongbing (HLB)is the most devastating citrus disease worldwide. Our previous high throughput sequencing has identified some differentially expressed small RNA (sRNA)between healthy and HLB-infected citrus, which are good candidates for early diagnosis markers and immune regulators. In this study, the detection methods and the function of these sRNA in HLB susceptibility or resistance were explored. [Methods] Stem-loop primers and detection primers of the four sRNA were designed according to their sequence. The expression of sRNA and their target genes were explored by using real-time quantitative PCR. [Results] The results showed that the four small RNA could be specifically detected with the designed primers with great efficiency. The relative quantitative analysis of gene expression showed that the four sRNA had reversed expression patterns of their cognate target genes. In particular, miR-753E-3p was up-regulated 4.69 times in HLB-infected citrus, whereas its target gene (Cs6g21280)showed 0.14 times reduction on expression upon HLB infection;miR838-3p was up-regulated 3.08 times in HLB-infected citrus, whereas the target gene (Cs8g02530)showed 0.29 times reduction upon HLB infection;miR-451b was 0.44 times down-regulated in HLB-infected citrus, in contrast, the expression of target gene (Cs6g05770)showed 8.95 times increase;miR2633 was 0.36 times down-regulated in HLB-infected citrus, while the expression of target gene (Cs2g08190)showed 3.06 times increase. Further research showed that Cs6g21280 was the homolog of Arabidopsis ATSMC4, which was related to the early flowering and the activation of disease resistance response;Cs6g05770 was homologous to Arabidopsis BAK1, which was related to PAMP-induced disease resistance response;Cs2g08190 and Cs8g02530 were homologs of Arabidopsis CIPK23 and PIP2, respectively, which were related to water shortage symptoms. [Conclusions] Our results indicate that these four sRNA are good early diagnosis markers and these primers can be used for the detection. These results also preliminarily reveal the confrontation between the HLB pathogen and their host, through the regulation of small RNA and is expected to provide new clues for the molecular mechanism of HLB disease.

参考文献/References:

[1] Bové J M. Huanglongbing:a destructive,newly-emerging,century-old disease of citrus[J]. Journal of Plant Pathology,2006,88 (1):7-37.
[2] 许美容,陈燕玲,邓晓玲.柑橘黄龙病症状与"Candidatus Liberibacter asiaticus"PCR检测结果的相关性分析[J]. 植物病理学报,2016,46 (1):367-373. Xu M R,Chen Y L,Deng X L. Correlationship between symptoms of citrus Huanglongbing and PCR detection of ‘Candidatus Liberibacter asiaticus’[J]. Acta Phytopathologica Sinica,2016,46 (1):367-373 (in Chinese with English abstract).
[3] Sarkar D S,Prakash K,Kumar N A,et al. Small RNA mediated regulation of seed germination[J]. Frontiers in Plant Science,2015,6:828.
[4] Zhang Z,Liu X,Guo X,et al. Arabidopsis AGO3 predominantly recruits 24-nt small RNAs to regulate epigenetic silencing[J]. Nature Plants,2016,2 (5):16049.
[5] Khalid A,Zhang Q,Yasir M,et al. Small RNA based genetic engineering for plant viral resistance:application in crop protection[J]. Frontiers in Microbiology,2017,8:43.
[6] Robert-Seilaniantz A,Dan M L,Jikumaru Y,et al. The microRNA miR393 re-directs secondary metabolite biosynthesis away from camalexin and towards glucosinolates[J]. Plant Journal,2011,67 (2):218.
[7] Ouyang S,Park G,Atamian H S,et al. MicroRNAs suppress NB domain genes in tomato that confer resistance to Fusarium oxysporum[J]. PLoS Pathogens,2014,10 (10):e1004464.
[8] Zhao H,Sun R,Albrecht U,et al. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease[J]. Molecular Plant,2013,6 (2):301-310.
[9] Li W,Hartung J S,Levy L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus Huanglongbing[J]. Journal of Microbiological Methods,2006,66 (1):104-115.
[10] 孙菲菲,侯喜林,李英,等. 不结球白菜硝酸还原酶基因cDNA的克隆及序列分析[J]. 南京农业大学学报,2006,29 (2):15-19. DOI:10.7685/j.issn.1000-2030.2006.02.004. Sun F F,Hou X L,Li Y,et al. Cloning and sequence analysis of nitrate reductase gene cDNA fragments from non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2006,29 (2):15-19 (in Chinese with English abstract).
[11] 王彦杰,陈叶清,薛泽云,等. 荷花花瓣着色过程实时荧光定量PCR内参基因的筛选及验证[J]. 南京农业大学学报,2017,40 (3):408-415. DOI:10.7685/jnau.201609033. Wang Y J,Chen Y Q,Xue Z Y,et al. Selection and validation of reference genes for RT-qPCR normalization in lotus (Nelumb onucifera)during petal coloration[J]. Journal of Nanjing Agricultural University,2017,40 (3):408-415 (in Chinese with English abstract).
[12] Ruiz-Ruiz S,Navarro B,Gisel A,et al. Citrus tristeza virus infection induces the accumulation of viral small RNAs (21-24-nt)mapping preferentially at the 3’-terminal region of the genomic RNA and affects the host small RNA profile[J]. Plant Molecular Biology,2011,75 (6):607.
[13] Lu Y B,Yang L T,Qi Y P,et al. Identification of boron-deficiency-responsive microRNAs in citrus sinensis roots by Illumina sequencing[J]. BMC Plant Biology,2014,14 (1):123.
[14] 程保平,赵弘巍,彭埃天,等. 以omp基因为靶标的3种检测方法对柑橘黄龙病菌检测效果比较[J]. 广东农业科学,2014,41 (5):141-145. Cheng B P,Zhao H W,Peng A T,et al. Comparative study on citrus Huanglongbing molecular detection methods with the omp target gene[J]. Guangdong Agricultural Sciences,2014,41 (5):141-145 (in Chinese with English abstract).
[15] Mccollum G,Hilf M,Irey M,et al. Susceptibility of sixteen citrus genotypes to ‘Candidatus Liberibacter asiaticus’[J]. Plant Disease,2016,100 (6):1080-1086.
[16] 张敏荣,余继华,於一敏,等. 采取健身栽培措施减轻柑橘黄龙病发生[J]. 浙江柑橘,2007,24 (4):28-30. Zhang M R,Yu J H,Yu Y M,et al. Mitigation of Huanglongbing disease with disease resistance cultivation[J]. Zhejiang Citrus,2007,24 (4):28-30 (in Chinese).
[17] Canales E,Coll Y,Hernández I,et al. ‘Candidatus Liberibacter asiaticus’,causal agent of citrus Huanglongbing,is reduced by treatment with brassinosteroids[J]. PLoS One,2016,11 (1):e0146223.
[18] Domínguezferreras A,Kisspapp M,Jehle A K,et al. An overdose of the Arabidopsis coreceptor BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 or its ectodomain causes autoimmunity in a suppressor of BIR1-1-dependent manner[J]. Plant Physiology,2015,168 (3):1106.
[19] Wang J,Blevins T,Podicheti R,et al. Mutation of Arabidopsis SMC4 identifies condensin as a corepressor of pericentromeric transposons and conditionally expressed genes[J]. Genes and Development,2017,31 (15):1601-1614.
[20] 李修华,李民赞,Lee W S,et al. 柑橘黄龙病的可见-近红外光谱特征[J]. 光谱学与光谱分析,2014,34 (6):1553-1559. Li X H,Li M Z,Lee W S,et al. Visible-NIR spectral feature of citrus greening disease[J]. Spectroscopy and Spectral Analysis,2014,34 (6):1553-1559 (in Chinese with English abstract).
[21] 刘燕德,肖怀春,邓清,等. 柑橘黄龙病近红外光谱无损检测[J]. 农业工程学报,2016,32 (14):202-208. Liu Y D,Xiao H C,Deng Q,et al. Nondestructive detection of citrus greening by near infrared spectroscopy[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32 (14):202-208 (in Chinese with English abstract).
[22] Wang L,Zhang C,Wang Y,et al. Tamarix hispida aquaporin ThPIP2,5 confers salt and osmotic stress tolerance to transgenic Tamarix and Arabidopsis[J]. Environmental and Experimental Botany,2018,152:158-166.
[23] Cheong Y H,Pandey G K,Grant J J,et al. Two calcineurin B-like calcium sensors,interacting with protein kinase CIPK23,regulate leaf transpiration and root potassium uptake in Arabidopsis[J]. Plant Journal for Cell & Molecular Biology,2007,52 (2):223-239.
[24] 杨玉枝,徐迪,岑伊静.健康和感染黄龙病砂糖桔嫩梢挥发性成分的分析[J]. 环境昆虫学报,2015,37 (2):328-333. Yang Y Z,Xu D,Cen Y J. Analysis of volatile compounds from young shoots of non-infected and Huanglongbing-infected citrus[J]. Journal of Environmental Entomology,2015,37 (2):328-333 (in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2017-12-26。
基金项目:广东省科技计划重点实验室项目(2014B030301053)
作者简介:Tanzeela Zia,硕士研究生。
通信作者:赵弘巍,教授,博导,主要从事非编码RNA在植物抗病性中作用的研究,E-mail:hzhao@njau.edu.cn;程保平,助理研究员,主要从事黄龙病防控工作,E-mail:1093449912@qq.com。
更新日期/Last Update: 2018-11-23