[1]章征程,林启美,李谟志,等.耕作对河套黄灌区典型盐碱土水稳定性团聚体及有机碳和全氮含量的影响[J].南京农业大学学报,2018,41(6):1085-1092.[doi:10.7685/jnau.201807005]
 ZHANG Zhengcheng,LIN Qimei,LI Mozhi,et al.Effects of cultivation on water-stable aggregates and their organic carbon and nitrogen in typical saline-alkali soil of Hetao Yellow River irrigation region[J].Journal of Nanjing Agricultural University,2018,41(6):1085-1092.[doi:10.7685/jnau.201807005]
点击复制

耕作对河套黄灌区典型盐碱土水稳定性团聚体及有机碳和全氮含量的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年6期
页码:
1085-1092
栏目:
出版日期:
2018-11-25

文章信息/Info

Title:
Effects of cultivation on water-stable aggregates and their organic carbon and nitrogen in typical saline-alkali soil of Hetao Yellow River irrigation region
作者:
章征程 林启美 李谟志 李贵桐 赵小蓉
中国农业大学资源与环境学院, 北京 100193
Author(s):
ZHANG Zhengcheng LIN Qimei LI Mozhi LI Guitong ZHAO Xiaorong
College of Resources and Environment, China Agricultural University, Beijing 100193, China
关键词:
河套黄灌区盐碱土耕作水稳性团聚体有机碳全氮
Keywords:
Hetao Yellow River irrigation regionsaline-alkali soilcultivationwater-stable aggregatesorganic carbontotal nitrogen
分类号:
S152.4
DOI:
10.7685/jnau.201807005
文献标志码:
A
摘要:
[目的]本文旨在探讨耕作对河套灌区典型盐碱土水稳定性团聚体及其有机碳和全氮含量的影响。[方法]选择河套黄灌区典型的5种盐碱土,用Yoder湿筛法测定水稳定性团聚体,再用元素分析仪测定有机碳和总氮含量。[结果]河套黄灌区典型盐碱土主要是53~10 μm团聚体,占55.84%~79.72%,平均68.10%;其次是250~53 μm团聚体,占11.79%~29.18%,平均17.95%;而 > 250 μm和 < 10 μm团聚体平均不超过5.21%,但不同盐碱土差异非常大。耕作增加了53~10 μm团聚体数量,减少了>250 μm和250~53 μm团聚体数量。>250 μm和<10 μm团聚体的有机碳和全氮含量比较高,有机碳含量平均分别为8.38和6.81 g·kg-1,全氮含量平均分别为0.98和1.04 g·kg-1,但由于这部分粒级团聚体的质量分数较高,有机碳和全氮主要分布在53~10 μm团聚体中。大团聚体质量分数与土壤有机碳和全氮含量呈显著正相关关系,而小团聚体质量分数与EC、pH及Na+、SO42-、Cl-和CO32-呈显著正相关关系。[结论]耕作降低了大部分土壤中各粒级团聚体有机碳和全氮含量,促进了有机碳和全氮从大团聚体向小团聚体转移。盐分决定盐碱土小团聚体的数量,而有机物质在大团聚体形成中起重要的作用。河套地区盐碱土改良,应在降低盐分的同时加大有机物质投入量。
Abstract:
[Objectives] This study was aimed to explore the effects of cultivation on water-stable aggregates and their organic carbon and totalnitrogen contents of the typical saline-alkaline soils in Hetao Yellow River irrigation region. [Methods] Five typical saline-alkali soils in this area were selected in this study. Different waterstable aggregates were separated by Yoder’s wet sieve method. The organic carbon and total nitrogen in the obtained soil aggregates were determined using a Elemental Vario EL Ⅲ analyzer. [Results] The results showed that the typical saline-alkali soils in Hetao Yellow River irrigation region were dorminant in 53-10 μm aggregates, accounting for 55.84%-79.72%, with an average of 69%;following by 250-53 μm aggregates, accounting for 11.79%-29.18%, with an average of 17.95%. Both >250 μm and <10 μm aggregates were evenly less than 5.21%, quite different among the tested saline-alkali soils. Cultivation induced increases of 53-10 μm aggregates but reduction in both >250 μm and 250-53 μm aggregates. Both >250 μm and <10 μm aggregates contained high organic carbon and total nitrogen, 8.38 g·kg-1and 6.81 g·kg-1 organic carbon, and 0.98 g·kg-1 and 1.04 g·kg-1 total nitrogen on average respectively. However, due to their high mass fraction, the 53-10 μm aggregates contributed most organic carbon and total nitrogen in the wholes. There was a significant positive correlation between the mass fractions of macroaggregates and soil organic carbon and total nitrogen, while the mass fractions of micro-aggregates were positively correlated with the values of EC, pH and Na+, SO42-, Cl-, and CO32-. [Conclusions] Cultivation results in reduction of organic carbon and total nitrogen of all the aggregates from most soils and promoted the transfer of organic carbon and total nitrogen from macroaggregates to microaggregates as well. Salinity determines the aggregation of small aggregatesin saline-alkali soils while organic matter may play an important role in the formation of large aggregates. Therefore, reducing salt content together with increasing soil organic matter can be the main technical approachs for improving saline-alkaline soil.

参考文献/References:

[1] 张先凤,朱安宁,张佳宝,等. 集约化种植下潮土养分肥力与团聚体特征相互关系研究[J]. 土壤,2017,49 (1):33-39. Zhang X F,Zhu A N,Zhang J B,et al. Relationship between nutrient fertility and aggregate characteristics of tidal soil under intensive planting[J]. Soils,2017,49 (1):33-39.
[2] Dong X,Guan T,Li G,et al. Long-term effects of biochar amount on the content and composition of organic matter in soil aggregates under field conditions[J]. Journal of Soils & Sediments,2016,16 (5):1481-1497.
[3] Deinlein U,Stephan A B,Horie T,et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science,2014,19 (6):371-379.
[4] 李慧,代新俊,高志强.夏闲期耕作对黄土高原旱地麦田土壤水稳性团聚体稳定性的影响[J]. 中国农业科学,2018,51 (13):2524-2534. Li H,Dai X J,Gao Z Q. Effects of summer idle farming on the stability of soil water-stable aggregates in dryland wheat field on the Loess Plateau[J]. Scientia Agricultura Sinica,2018,51 (13):2524-2534 (in Chinese with English abstract).
[5] 操庆,魏晓兰,吴彩姣,等. 盐分积累对设施土壤电化学性质和水稳性团聚体影响的模拟研究[J]. 水土保持通报,2016,36 (1):164-168. Cao Q,Wei X L,Wu C J,et al. Simulation of the effects of salt accumulation on electrochemical properties and water-stable agglomerates in facility soils[J]. Bulletin of Soil and Water Conservation,2016,36 (1):164-168 (in Chinese with English abstract).
[6] 魏宇轩,蔡红光,张秀芝,等. 不同种类有机肥施用对黑土团聚体有机碳及腐殖质组成的影响[J]. 水土保持学报,2018,32 (3):258-263. Wei Y X,Cai H G,Zhang X Z,et al. Effects of different types of organic manure application on organic carbon and humus composition in black soil aggregates[J]. Journal of Soil and Water Conservation,2018,32 (3):258-263 (in Chinese with English abstract).
[7] 徐璐. 耕作及石膏对苏打盐碱土改良作用研究[D]. 长春:中国科学院东北地理与农业生态研究所,2012. Xu L. Study on the improvement of soda saline-alkali soil by tillage and gypsum[D]. Changchun:Northeast Institute of Geography and Agricultural Ecology,Chinese Academy of Sciences,2012 (in Chinese with English abstract).
[8] 胡尧,李懿,侯雨乐.不同土地利用方式对岷江流域土壤团聚体稳定性及有机碳的影响[J]. 水土保持研究,2018,25 (4):22-29. Hu Y,Li Y,Hou Y L. Effects of land use types on stability and organic carbon of soil aggregates in Minjiang River Valley[J]. Research of Soil and Water Conservation,2018,25 (4):22-29 (in Chinese with English abstract).
[9] 张丽娜,Asenso Evans,张陆勇,等. 耕作方式对旱地红壤物理特性的影响[J]. 水土保持研究,2018,25 (3):46-50. Zhang L N,Asenso Evans,Zhang L Y,et al. Effects of tillage methods on the physical characteristics of red soil of upland[J]. Research of Soil and Water Conservation,2018,25 (3):46-50 (in Chinese with English abstract).
[10] Gao L,Becker E,Liang G,et al. Effect of different tillage systems on aggregate structure and inner distribution of organic carbon[J]. Geoderma,2017,288:97-104.
[11] 李建设,柴良义.河套灌区土壤次生盐渍化的成因特点及改良措施[J]. 内蒙古农业科技,2000 (S1):157-158. Li J S,Chai L Y.Genesis characteristics and improvement measures of soil secondary salinization in Hetao irrigation district[J]. Inner Mongolia Agricultural Science and Technology,2000 (S1):157-158 (in Chinese).
[12] 王洪伟,王云龙,王志红,等. 苏打盐碱土生态恢复过程中土壤养分与有机质的变化[J]. 北华大学学报 (自然科学版),2013,14 (6):729-731. Wang H W,Wang Y L,Wang Z H,et al. Changes of soil nutrients and organic matter during the ecological restoration of soda saline-alkali soil[J]. Journal of Beihua University (Natural Science Edition),2013,14 (6):729-731 (in Chinese with English abstract).
[13] 李艳华,许月卿,郭洪峰.西部生态脆弱区农用地质量等别限制因素及提升策略研究[J]. 中国农业资源与区划,2014,35 (1):67-74. Li Y H,Xu Y Q,Guo H F. Research on limiting factors and promotion strategies of agricultural land grading in western ecological fragile areas[J]. Chinese Journal of Agricultural Resources and Regional Planning,2014,35 (1):67-74 (in Chinese with English abstract).
[14] Elliott E T. Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal,1986,50 (3):627-633.
[15] Six J,Elliott E T,Paustian K. Soil structure and soil organic matter:Ⅱ. A normalized stability index and the effect of mineralogy[J]. Soil Science Society of America Journal,2000,64 (3):1042-1049.
[16] 刘晓利,何园球,李成亮,等. 不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J]. 土壤学报,2008,45 (3):459-465. Liu X L,He Y Q,Li C L,et al. Distribution and physical properties of water-stable aggregates in red soils with different utilization patterns and fertility[J]. Acta Pedologica Sinica,2008,45 (3):459-465 (in Chinese with English abstract).
[17] 刘恩科,赵秉强,梅旭荣,等. 不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响[J]. 生态学报,2010,30 (4):1035-1041. Liu E K,Zhao B Q,Mei X R,et al. Distribution of water-stable agregates and organic carbon of arable soils affected by diferent fertilizer application[J]. Acta Ecologica Sinica,2010,30 (4):1035-1041 (in Chinese with English abstract).
[18] 王铁成,冯百成. 盐碱土团聚体的有机碳含量分布[J]. 吉林农业科技学院学报,2015,24 (1):8-9. Wang T C,Feng B C. On the distribution of organic carbon content in saline soil aggregates[J]. Journal of Jilin Agricultural Science and Technology College,2015,24 (1):8-9 (in Chinese with English abstract).
[19] 任镇江,罗友进,魏朝富. 农田土壤团聚体研究进展[J]. 安徽农业科学,2011,39 (2):1101-1105. Ren Z J,Luo Y J,Wei C F. Progress in the study on field soil aggregate[J]. Journal of Anhui Agricultural Sciences,2011,39 (2):1101-1105 (in Chinese with English abstract).
[20] 周振方,胡雅杰,马灿,等. 长期传统耕作对土壤团聚体稳定性及有机碳分布的影响[J]. 干旱地区农业研究,2012,30 (6):145-151. Zhou Z F,Hu Y J,Ma C,et al. Effects of long-term traditional tillage on soil aggregate stability and organic carbon distribution[J]. Arid Region Research of Agriculture,2012,30 (6):145-151 (in Chinese).
[21] 王勇,姬强,刘帅,等. 耕作措施对土壤水稳性团聚体及有机碳分布的影响[J]. 农业环境科学学报,2012,31 (7):1365-1373. Wang Y,Ji Q,Liu S,et al. Effects of tillage practices on water-stable aggregation and aggregate-associated organic C in soils[J]. Journal of Agro-Environment Science,2012,31 (7):1365-1373 (in Chinese with English abstract).
[22] 杨如萍,郭贤仕,吕军峰,等. 不同耕作和种植模式对土壤团聚体分布及稳定性的影响[J]. 水土保持学报,2010,24 (1):252-256. Yang R P,Guo X S,Lü J F,et al. Affects of distribution and stability on soil aggregate in different patterns of tillgate and cropping[J]. Journal of Soil and Water Conservation,2010,24 (1):252-256 (in Chinese with English abstract).
[23] Zou C,Li Y,Huang W,et al. Rotation and manure amendment increase soil macro-aggregates and associated carbon and nitrogen stocks in flue-cured tobacco production[J]. Geoderma,2018,325:49-58.
[24] 郭菊花,陈小云,刘满强,等. 不同施肥处理对红壤性水稻土团聚体的分布及有机碳、氮含量的影响[J]. 土壤,2007,39 (5):117-123. Guo J H,Chen X Y,Liu M Q,et al. Effects of fertilizer management practice on distribution of aggregates and content of organic carbon and nitrogen in red paddy soil[J]. Soils,2007,39 (5):117-123 (in Chinese with English abstract).
[25] He Y T,Zhang W J,Xu M G,et al. Long-term combined chemical and manure fertilizations increase soil organic carbon and total nitrogen in aggregate fractions at three typical cropland soils in China[J]. Science of the Total Environment,2015,532 (1):635-644.
[26] 魏朝富,谢德体,李保国. 土壤有机无机复合体的研究进展[J]. 地球科学进展,2003,18 (2):221-227. Wei C F,Xie D T,Li B G. Progress in resaerch on soil organo-mineral complexes[J]. Advances in Earth Science,2003,18 (2):221-227 (in Chinese with English abstract).
[27] Puget P,Chenu C,Balesdent J. Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J]. European Journal of Soil Science,2000,51 (4):595-605.
[28] Besnard E,Chenu C,Balesdent J,et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science,1996,47 (4):495-503.
[29] Du Z,Han X,Wang Y,et al. Changes in soil organic carbon concentration,chemical composition and aggregate stability as influenced by tillage systems in the semi-arid and semi-humid area of North China[J]. Canadian Journal of Soil Science,2017,98 (1):91-102.

备注/Memo

备注/Memo:
收稿日期:2018-07-02。
基金项目:国家重点研发计划项目(2016YFC0501306)
作者简介:章征程,硕士研究生。
通信作者:林启美,教授,研究方向为土壤生物与生物过程,E-mail:linqm@cau.edu.cn。
更新日期/Last Update: 2018-11-23