[1]原建博,李骅,吴崇友,等.基于离散单元法的水稻籽粒快速颗粒建模研究[J].南京农业大学学报,2018,41(6):1151-1158.[doi:10.7685/jnau.201801004]
 YUAN Jianbo,LI Hua,WU Chongyou,et al.Study on apace particle modeling of rice grain basis on the discrete element method[J].Journal of Nanjing Agricultural University,2018,41(6):1151-1158.[doi:10.7685/jnau.201801004]
点击复制

基于离散单元法的水稻籽粒快速颗粒建模研究()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
41卷
期数:
2018年6期
页码:
1151-1158
栏目:
出版日期:
2018-11-25

文章信息/Info

Title:
Study on apace particle modeling of rice grain basis on the discrete element method
作者:
原建博12 李骅2 吴崇友3 齐新丹1 施新新1 李超2
1. 南京工业大学机械与动力工程学院, 江苏 南京 211816;
2. 江苏省高等学校智能化农业装备重点实验室/南京农业大学工学院, 江苏 南京 210031;
3. 农业农村部南京农业机械化研究所, 江苏 南京 210014
Author(s):
YUAN Jianbo12 LI Hua2 WU Chongyou3 QI Xindan1 SHI Xinxin1 LI Chao2
1. School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211816, China;
2. Intelligent Agricultural Equipment Key Laboratory, College and Universities in Jiangsu Province/College of Engineering, Nanjing Agricultural University, Nanjing 210031, China;
3. Nanjing Research Institute for Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
关键词:
中早39号水稻籽粒离散单元法边界包络手动填充法应用程序编程接口自然堆积角
Keywords:
Zhongzao 39rice graindiscrete element method(DEM)boundary envelope manual filling methodapplication programming interfacenatural accumulation angle
分类号:
TP391.7
DOI:
10.7685/jnau.201801004
文献标志码:
A
摘要:
[目的]离散单元法(discrete element method,DEM)主要用于离散颗粒物料研究领域,非规则形状颗粒建模耗费大量时间,且模型精度对颗粒间的动力学响应特性有较大影响,故本文采用离散单元法研究水稻籽粒快速颗粒建模方法,旨在提高非规则形状颗粒建模效率及精度。[方法]以‘中早39号’早稻籽粒为研究对象,通过非接触式3D激光扫描法重构籽粒3D模型;采用手动填充颗粒建模方法,设置球体坐标、接触半径及物理半径使填充颗粒模型三轴尺寸及体积接近实际籽粒;采用自动填充颗粒建模方法,对籽粒3D模型划分网格及获取网格单元坐标信息,然后通过工程离散单元法(engineering discrete element method,EDEM)中的应用程序编程接口(API)实现多球快速聚合颗粒建模;通过高斯拟合法对自动填充颗粒建模中的填充参数进行优化分析,并通过籽粒自然堆积角仿真与试验对比验证模型精度。[结果]重构籽粒3D模型与实际籽粒对比尺寸误差均在5%以内;手动填充颗粒模型填充球数164个,耗时约25 h,尺寸误差均在5%以上;自动填充颗粒模型填充球数203个,球体物理半径为1.2 mm时颗粒模型最优,耗时约1 h,尺寸误差除厚度外均在5%以下;自动填充颗粒自然堆积角仿真结果与试验结果误差为0.76%。[结论]基于EDEM中API自动填充颗粒建模方法具有高效、精确等优点,为非规则形状颗粒物料的离散单元法研究提供了一种有效的颗粒建模方法。
Abstract:
[Objectives] The discrete element method (DEM)was utilized to simulate the process of discrete particle materials. The modeling of irregular-shaped particles took a lot of time, and the accuracy of the model had a great influence on the dynamic response characteristics between particles. This study was to improve the modeling efficiency and accuracy of irregular-shaped particle. [Methods] This research took ‘Zhongzao 39’ early rice grain as the sample, and achieved the 3D model of grain by 3D laser scanning system. The process of modeling particles by the manual filling method was described as that set the sphere coordinates, contact radius and physical radius and so on. Results showed that the filling particle model three-axis size and volume were close to the actual grain;the process of modeling particles using automatic filling method was described as that mesh 3D model of grain and achieve the coordinate information of mesh. Finally, the application programming interface (API)from EDEM software was used to accurately and fleetly construct the particle model of grain. We confirmed an optimum parameter for automatic filling particle model by the gauss fitting method, and verified the accuracy of the particle model by comparing simulation and experiments of the natural accumulation angle of grain. [Results] The size of 3D grain model was close to the actual grain with an error of under 5%. In the manual filling method, the particle model filled 164 balls, which took about 25 hours, and the dimensional errors were all above 5%. In the automatic filling method, the particle model filled 203 balls with a physical radius of 1.2 mm, and the particle model was optimal, which took about 1 hour, in which the dimensional errors were in 5% apart from the thickness. The simulation result of natural accumulation angle were agreed with the experiment result with an error of 0.76%. [Conclusions] The research results show that the multi-sphere apace automatic filling particle modeling method has the advantages of modeling efficiency and high model accuracy, which provides an effective particle modeling method for the study of the non-regular shape discrete materials using the discrete element method.

参考文献/References:

[1] 马征,李耀明,徐立章. 农业工程领域颗粒运动研究综述[J]. 农业机械学报,2013,44 (2):22-29. Ma Z,Li Y M,Xu L Z. Summarize of particle movements research in agricultural engineering realm[J]. Transactions of the Chinese Society for Agricultural Machinery,2013,44 (2):22-29 (in Chinese with English abstract).
[2] Li H,Qian Y,Cao P,et al. Calculation method of surface shape feature of rice seed based on point cloud[J]. Computers and Electronics in Agriculture,2017,142:416-423.
[3] 李骅,尹文庆,高翔,等. 基于逆向工程的谷粒三维模型的构建[J]. 西北农林科技大学学报 (自然科学版),2011,39 (12):201-206. Li H,Yin W Q,Gao X,et al. Construction of three-dimensional model of grain based on reverse engineering[J]. Journal of Northwest A&F University (Natural Science Edition),2011,39 (12):201-206 (in Chinese with English abstract).
[4] 刘彩铃,王亚丽,宋建农,等. 基于三维激光扫描的水稻种子离散元建模及试验[J]. 农业工程学报,2016,32 (15):294-300. Liu C L,Wang Y L,Song J N,et al. Experiment and discrete element model of rice seed based on 3D laser scanning[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32 (15):294-300 (in Chinese with English abstract).
[5] Cundall P A,Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique,1979,29 (1):47-65.
[6] 于亚军,周海玲,付宏,等. 基于颗粒聚合体的玉米果穗建模方法[J]. 农业工程学报,2012,28 (8):167-174. Yu Y J,Zhou H L,Fu H,et al. Modeling method of corn ears based on particles agglomerate[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28 (8):167-174 (in Chinese with English abstract).
[7] Abbaspour-Fard M H. Theoretical validation of a multi-sphere,discrete element model suitable for biomaterials handling simulation[J]. Biosystems Engineering,2004,88 (2):153-161.
[8] Kruggel-Emden H,Rickelt S,Wirtz S,et al. A study on the validity of the multi-sphere discrete element method[J]. Powder Technology,2008,188 (2):153-165.
[9] Markauskas D,Ka Ac1 ianauskas R,D Ac1 iugys A,et al. Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations[J]. Granular Matter,2010,12 (1):107-123.
[10] Markauskas D,Ramírez-Gómez Á,Ka Ac1 ianauskas R,et al. Maize grain shape approaches for DEM modelling[J]. Computers and Electronics in Agriculture,2015,118:247-258.
[11] Parafiniuk P,Molenda M,Horabik J. Influence of particle shape and sample width on uniaxial compression of assembly of prolate spheroids examined by discrete element method[J]. Physica A:Statistical Mechanics and Its Applications,2014,416:279-289.
[12] Ka Ac1 ianauskas R,Tumonis L,D Ac1 iugys A. Simulation of the normal impact of randomly shaped quasi-spherical particles[J]. Granular Matter,2014,16 (3):339-347.
[13] Ferellec J,Mcdowell G R. A method to model realistic particle shape and inertia in DEM[J]. Granular Matter,2010,12 (5):459-467.
[14] 胡国明. 颗粒系统的离散元素法分析仿真[M]. 武汉:武汉大学出版社,2010. Hu G M. Analysis and Simulation of Granular System by Discrete Element Method Using EDEM[M]. Wuhan:Wuhan University Press,2010 (in Chinese).
[15] 李聪波,顾小进,李玲玲,等. 逆向工程辅助零部件再制造关键技术及应用[J]. 计算机集成制造系统,2015,21 (1):143-150. Li C B,Gu X J,Li L L,et al. Key technologies and applications of the reverse engineering aided used part remanufacturing[J]. Computer Integrated Manufacturing Systems,2015,21 (1):143-150 (in Chinese with English abstract).
[16] 许蕾,罗会信. 基于ANSYS ICEM CFD和CFX数值仿真技术[J]. 机械工程师,2008 (12):65-66. Xu L,Luo H X. The technology of numerical simulation based on ANSYS ICEM CFD and CFX software[J]. Mechanical Engineer,2008 (12):65-66 (in Chinese with English abstract).
[17] 周祖鄂. 农业物料学[M]. 北京:中国农业出版社,1994. Zhou Z E. Physical Properties of Agricultural Materials[M]. Beijing:China Agriculture Press,1994 (in Chinese).
[18] 国家机械工业局. 连续输送设备:散粒物料堆积角的测定JB/T 9014.7-1999[S]. 北京:机械科学研究院,2000. The State Machinery Industry Bureau. Continuous handling equipment:loose bulk material-determination of accumulated angle JB/T 9014.7-1999[S]. Beijing:China Academy of Machinery Science and Technology,2000 (in Chinese).
[19] 吴爱祥,孙业志,刘湘平. 散体动力学理论及其应用[M]. 北京:冶金工业出版社,2002. Wu A X,Sun Y Z,Liu X P. Theory of Bulk Dynamics and Its Application[M]. Beijing:Metallurgical Industry Press,2002 (in Chinese).
[20] 贾富国,韩燕龙,刘扬,等. 稻谷颗粒物料堆积角模拟预测方法[J]. 农业工程学报,2014,30 (11):254-260. Jia F G,Han Y L,Liu Y,et al. Simulation prediction method of repose angle for rice particle materials[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30 (11):254-260 (in Chinese with English abstract).
[21] 中国人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 农业机械试验条件:测定方法的一般规定GB/T 5262-2008[S]. 2008. General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,China National Standardization Administration Commission. Measuring methods for agricultural machinery testing conditions:general rules GB/T 5262-2008[S]. 2008 (in Chinese).
[22] 戴宏钦. 球体随机堆积及其堆积结构的研究[D]. 苏州:苏州大学,2011. Dai H Q. The research on sphere random packings and packing structure[D]. Suzhou:Soochow University,2011 (in Chinese with English abstract).

备注/Memo

备注/Memo:
收稿日期:2018-01-04。
基金项目:国家自然科学基金青年基金项目(51305182);农业部现代农业装备重点实验室开放课题(201602004)
作者简介:原建博,硕士研究生。
通信作者:齐新丹,副教授,研究方向为农业现代化装备,E-mail:1710863381@qq.com;吴崇友,研究员,博士,研究方向为农业机械,E-mail:cywu59@sina.com。
更新日期/Last Update: 2018-11-23