[1]安聪,张一,张皖皖,等.菊花CmPAL基因的克隆及表达分析[J].南京农业大学学报,2019,42(1):73-80.[doi:10.7685/jnau.201802032]
 AN Cong,ZHANG Yi,ZHANG Wanwan,et al.Cloning and expression analysis of CmPAL gene in Chrysanthemum morifolium[J].Journal of Nanjing Agricultural University,2019,42(1):73-80.[doi:10.7685/jnau.201802032]
点击复制

菊花CmPAL基因的克隆及表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
73-80
栏目:
植物科学
出版日期:
2019-01-09

文章信息/Info

Title:
Cloning and expression analysis of CmPAL gene in Chrysanthemum morifolium
作者:
安聪 张一 张皖皖 张婷 蒋甲福 陈发棣 房伟民 陈素梅
南京农业大学园艺学院/农业农村部景观设计重点实验室, 江苏 南京 210095
Author(s):
AN Cong ZHANG Yi ZHANG Wanwan ZHANG Ting JIANG Jiafu CHEN Fadi FANG Weimin CHEN Sumei
College of Horticulture/Key Laboratory of Landscape Design, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
关键词:
菊花CmPAL基因基因表达胁迫植物激素
Keywords:
Chrysanthemum morifoliumCmPAL genegene expressionstressesphytohormones
分类号:
S682.1
DOI:
10.7685/jnau.201802032
摘要:
[目的]本文旨在克隆菊花中苯丙氨酸解氨酶基因(PAL),并探讨其在不同组织的表达特性以及在胁迫和激素处理下的响应模式。[方法]以菊花‘神马’为试验材料,依据其转录组数据库信息,克隆CmPAL全长,并利用生物信息学方法对其进行分析。利用荧光定量PCR检测该基因在不同组织中的相对表达量,在蚜虫和干旱胁迫以及不同激素处理下的表达变化。[结果]CmPAL基因开放阅读框(ORF)全长2 154 bp,编码氨基酸717个,理论等电点(pI)为5.75,预测蛋白相对分子质量为77.73×103。系统进化分析表明该基因编码的蛋白与黄花蒿和泡黄金菊的PAL亲缘关系最近,同源性分别为97.94%和91.88%,具有较高的保守性。CmPAL在菊花根中表达量最高,管状花中次之。蚜虫胁迫和茉莉酸甲酯(MeJA)可诱导CmPAL基因的表达,水杨酸(SA)、独角金内酯类似物GR24则抑制CmPAL的表达。干旱胁迫3 h处理组CmPAL基因表达量高于对照组。[结论]菊花‘神马’CmPAL基因在菊花的根中表达量最高,并受蚜虫和MeJA诱导,受SA和独角金内酯类似物GR24抑制,表明该基因可能参与多种胁迫防御反应和激素应答。
Abstract:
[Objectives]The purpose of this research is to clone the phenylalanine ammonia-lyase gene(PAL) in chrysanthemum and dissect it roles in response to different stresses and phytohormones. [Methods]The full-length of CmPAL was obtained from chrysanthemum ‘Jinba’ based on its RNA-seq library. Bioinformatic technologies were used to analyze the gene. The relative expression levels of CmPAL in different tissues of plant were detected by RT-qPCR. The expression profiles of CmPAL under aphids,drought,and different plant hormones were analyzed. [Results]CmPAL gene had an open reading frame(ORF) of 2 154 bp encoding 717 amino acids. The theoretical isoelectric point(pI) was 5.75,and the predicted protein molecular weight was 77.73×103. Phylogenetic analysis showed that it had the closest relationship with Artemisia annua and Chrysanthemum boreale,and the amino acid sequence identity was 97.94% and 91.88%,respectively. CmPAL had the highest expression level in root,followed by that in tubular floret. CmPAL was induced by aphid and methyl jasmonate(MeJA),while it was inhibited by salicylic acid(SA) or the strigolactone analogue GR24. The expression level of CmPAL at 3 h after drought treatment was higher than that of the control group. [Conclusions]CmPAL in chrysanthemum ‘Jinba’ was of the highest expression level in root. The expression of CmPAL positively responded to aphid and MeJA,while negatively to SA and GR24,which suggested that CmPAL might be involved in multiple stress defense and phytohormone responses.

参考文献/References:

[1] Vogt T. Phenylpropanoid biosynthesis[J]. Molecular Plant,2010,3(1):2-20.
[2] Irisarri P,Zhebentyayeva T,Errea P,et al. Differential expression of phenylalanine ammonia lyase(PAL) genes implies distinct roles in development of graft incompatibility symptoms in Prunus[J]. Scientia Horticulturae,2016,204:16-24.
[3] Dixon R A,Paiva N L. Stress-induced phenylpropanoid metabolism[J]. The Plant Cell,1995,7(7):1085-1097.
[4] Shang Q M,Li L,Dong C J. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.[J]. Planta,2012,236(4):1093-1105.
[5] Kim D S,Hwang B K. An important role of the pepper phenylalanine ammonia-lyase gene(PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens[J]. Journal of Experimental Botany,2014,65(9):2295-2306.
[6] Cass C L,Peraldi A,Dowd P F,et al. Effects of PHENYLALANINE AMMONIA LYASE(PAL) knockdown on cell wall composition,biomass digestibility,and biotic and abiotic stress responses in Brachypodium[J]. Journal of Experimental Botany,2015,66(14):4317-4335.
[7] Zhang Y,Fu X,Hao X,et al. Molecular cloning and promoter analysis of the specific salicylic acid biosynthetic pathway gene phenylalanine ammonia-lyase(AaPAL1) from Artemisia annua[J]. Biotechnology and Applied Biochemistry,2016,63(4):514-524.
[8] Xia X,Shao Y,Jiang J,et al. Gene expression profiles responses to aphid feeding in chrysanthemum(Chrysanthemum morifolium)[J]. BMC Genomics,2014,15(1):1050-1066.
[9] 王银杰. 独脚金内酯调控菊花抗蚜性机制研究[D]. 南京:南京农业大学,2017. Wang Y J. The roles of strigolactone in resistance of chrysanthemum to aphid[D]. Nanjing:Nanjing Agricultural University,2017(in Chinese with English abstract).
[10] Li P,Song A,Gao C,et al. The over-expression of a chrysanthemum WRKY transcription factor enhances aphid resistance[J]. Plant Physiology and Biochemistry,2015,95:26-34.
[11] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[12] Yang H Y,Dong T,Li J F,et al. Molecular cloning,expression,and subcellular localization of a PAL gene from Citrus reticulata under iron deficiency[J]. Biologia Plantarum,2016,60(3):482-488.
[13] Ohl S,Hedrick S A,Chory J,et al. Functional properties of a phenylalanine ammonia-lyase promoter from Arabidopsis[J]. The Plant Cell,1990,2(9):837-848.
[14] de Jong F,Hanley S J,Beale M H,et al. Characterisation of the willow phenylalanine ammonia-lyase(PAL) gene family reveals expression differences compared with poplar[J]. Phytochemistry,2015,117:90-97.
[15] Elkind Y,Edwards R,Mavandad M,et al. Abnormal plant development and down-regulation of phenylpropanoid biosynthesis in transgenic tobacco containing a heterologous phenylalanine ammonia-lyase gene[J]. Proc Natl Acad Sci USA,1990,87(22):9057-9061.
[16] Li W,Tian Z,Yu D. WRKY13 acts in stem development in Arabidopsis thaliana[J]. Plant Science,2015,236:205-213.
[17] Dar S A,Wani A R,Rather B A,et al. Resistance against insect pests by plant phenolics and their derivative compounds[J]. Chem Sci Rev Lett,2017,6(22):1073-1081.
[18] Villada E S,González E G,López-Sesé A I,et al. Hypersensitive response to Aphis gossypii Glover in melon genotypes carrying the Vat gene[J]. Journal of Experimental Botany,2009,60(11):3269-3277.
[19] Napal G N D,Palacios S M. Bioinsecticidal effect of the flavonoids pinocembrin and quercetin against Spodoptera frugiperda[J]. Journal of Pest Science,2015,88(3):629-635.
[20] Nakabayashi R,Yonekura-Sakakibara K,Urano K,et al. Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids[J]. The Plant Journal,2014,77(3):367-379.
[21] Zhu L J,Deng X G,Zou L J,et al. Enhancement of stress tolerance in cucumber seedlings by proanthocyanidins[J]. Biologia Plantarum,2017,61(2):323-332.
[22] Ahmad P,Rasool S,Gul A,et al. Jasmonates:multifunctional roles in stress tolerance[J]. Frontiers in Plant Science,2016,7:813.
[23] Glowacz M,Roets N,Sivakumar D. Control of anthracnose disease via increased activity of defence related enzymes in ‘Hass’ avocado fruit treated with methyl jasmonate and methyl salicylate[J]. Food Chemistry,2017,234:163-167.
[24] Schouteden N,Lemmens E,Stuer N,et al. Direct nematicidal effects of methyl jasmonate and acibenzolar-S-methyl against Meloidogyne incognita[J]. Natural Product Research,2017,31(10):1219-1222.
[25] Caarls L,Pieterse C M J,van Wees S. How salicylic acid takes transcriptional control over jasmonic acid signaling[J]. Frontiers in Plant Science,2015,6:170.
[26] Kusniercayk A,Winge P E R,Jrstad T S,et al. Towards global understanding of plant defence against aphids-timing and dynamics of early Arabidopsis defence responses to cabbage aphid(Brevicoryne brassicae) attack[J]. Plant,Cell and Environment,2008,31(8):1097-1115.
[27] Thaler J S,Humphrey P T,Whiteman N K. Evolution of jasmonate and salicylate signal crosstalk[J]. Trends in Plant Science,2012,17(5):260-270.
[28] Bu Q,Lü T,Shen H,et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiology,2014,164(1):424-439.
[29] Piisil? M,Keceli M A,Brader G,et al. The F-box protein MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana[J]. BMC Plant Biology,2015,15(1):53-70.
[30] Cooper J W,Hu Y,Beyyoudh L,et al. Strigolactones positively regulate chilling tolerance in pea and in Arabidopsis[J]. Plant,Cell and Environment,2018,41(6):1298-1310.

相似文献/References:

[1]杨伟,陈发棣,陈素梅,等.不同菊花品种不同开花阶段舌装花耐热性比较[J].南京农业大学学报,2011,34(2):47.[doi:10.7685/j.issn.1000-2030.2011.02.009]
 YANG Wei,CHEN Fa-di,CHEN Su-mei,et al.Comparison of heat tolerance of ray florets of different chrysanthemum cultivars at different flowering stages[J].Journal of Nanjing Agricultural University,2011,34(1):47.[doi:10.7685/j.issn.1000-2030.2011.02.009]
[2]杨雪萌,房伟民,陈发棣,等.两个菊花品种扦插生根过程及其插穗碳氮营养和内源激素的变化[J].南京农业大学学报,2010,33(4):19.[doi:10.7685/j.issn.1000-2030.2010.04.004]
 YANG Xue-meng,FANG Wei-min,CHEN Fa-di,et al.Cuttings rooting process and changes in carbohydrate,nitrogen and endogenous hormone levels during the rooting of two chrysanthemum cultivars[J].Journal of Nanjing Agricultural University,2010,33(1):19.[doi:10.7685/j.issn.1000-2030.2010.04.004]
[3]张飞,谢伟,陈发棣,等.中国菊花品种初选核心种质的代表性检验[J].南京农业大学学报,2009,32(2):47.[doi:10.7685/j.issn.1000-2030.2009.02.010]
 ZHANG Fei,XIE Wei,CHEN Fa-di,et al.Representativeness test for candidate core collection of chrysanthemum (Dendranthema×grandiflorum) in China[J].Journal of Nanjing Agricultural University,2009,32(1):47.[doi:10.7685/j.issn.1000-2030.2009.02.010]
[4]丁玲,陈发棣,腾年军,等.野生及不同用途菊花的同工酶分析[J].南京农业大学学报,2008,31(3):37.[doi:10.7685/j.issn.1000-2030.2008.03.007]
 DING Ling,CHEN Fa-di,TENG Nian-jun,et al.Isozyme analysis of wild species and cultivars with different uses in Dendranthema grandiflorum[J].Journal of Nanjing Agricultural University,2008,31(1):37.[doi:10.7685/j.issn.1000-2030.2008.03.007]
[5]李鸿渐,张效平,王彭伟.切花菊新品种选育的研究[J].南京农业大学学报,1991,14(03):31.[doi:10.7685/j.issn.1000-2030.1991.03.007]
 Li Hongjian,Zhang Xiaoping,Wang Pengwei.STUDIES ON BREEDING OF NEW CULTIVARS OF CHRYSANTHEMUM FOR CUT-FLOWERS[J].Journal of Nanjing Agricultural University,1991,14(1):31.[doi:10.7685/j.issn.1000-2030.1991.03.007]
[6]李鸿渐,邵健文.中国菊花品种资源的调查收集与分类[J].南京农业大学学报,1990,13(01):30.[doi:10.7685/j.issn.1000-2030.1990.01.006]
 Li Hongjian Shao Jianwen.INVESTIGATION,COLLECTION AND CLASSIFICATION OF CHRYSANTHEMUM CULTIV ARS IN CHINA[J].Journal of Nanjing Agricultural University,1990,13(1):30.[doi:10.7685/j.issn.1000-2030.1990.01.006]
[7]侯喜林.菊花花瓣培养不定芽的形成及植株再生[J].南京农业大学学报,1990,13(03):42.[doi:10.7685/j.issn.1000-2030.1990.03.007]
 Hou Xilin.FORMATION OF ADVENTITIOUS BUDS AND PLANT REGENERATION FROM PETAL SEGMENT CULTURE OF CHRYSANTHEMUMS IN VITRO[J].Journal of Nanjing Agricultural University,1990,13(1):42.[doi:10.7685/j.issn.1000-2030.1990.03.007]
[8]张飞,陈发棣*,房伟民,等.菊花花期性状的杂种优势与混合遗传分析[J].南京农业大学学报,2011,34(4):31.[doi:10.7685/j.issn.1000-2030.2011.04.006]
 ZHANG Fei,CHEN Fa-di *,FANG Wei-min,et al.Heterosis and mixed genetic analysis for florescence-related traits of chrysanthemum[J].Journal of Nanjing Agricultural University,2011,34(1):31.[doi:10.7685/j.issn.1000-2030.2011.04.006]
[9]孙娅,陈素梅,陈发棣,等.菊花近缘种属植物抗蚜性机制研究[J].南京农业大学学报,2012,35(3):25.[doi:10.7685/j.issn.1000-2030.2012.03.005]
 SUN Ya,CHEN Su-mei,CHEN Fa-di,et al.Studies on the mechanisms involved in resistance of closely related species of chrysanthemum to aphid[J].Journal of Nanjing Agricultural University,2012,35(1):25.[doi:10.7685/j.issn.1000-2030.2012.03.005]
[10]楼望淮,蒋甲福,陈素梅,等.菊花B病毒外壳蛋白互作蛋白的筛选[J].南京农业大学学报,2013,36(4):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]
 LOU Wanghuai,JIANG Jiafu,CHEN Sumei,et al.Screening of proteins interacting with the coat protein of Chrysanthemum virus B[J].Journal of Nanjing Agricultural University,2013,36(1):43.[doi:10.7685/j.issn.1000-2030.2013.04.008]

备注/Memo

备注/Memo:
收稿日期:2018-02-28。
基金项目:国家自然科学基金项目(31672192,31471913);江苏省科技支撑计划项目(BE2017318)
作者简介:安聪,硕士研究生。
通信作者:陈素梅,教授,主要从事菊花遗传育种与分子生物学研究,E-mail:chensm@njau.edu.cn。
更新日期/Last Update: 1900-01-01