[1]叶珂祯,王宗秀,陈熙,等.单壁碳纳米管对莱茵衣藻光合产氢的影响[J].南京农业大学学报,2019,42(1):94-101.[doi:10.7685/jnau.201804018]
 YE Kezhen,WANG Zongxiu,CHEN Xi,et al.Effects of single-walled carbon nanotubes on photosynthetic hydrogen production in Chlamydomonas reinhardtii[J].Journal of Nanjing Agricultural University,2019,42(1):94-101.[doi:10.7685/jnau.201804018]
点击复制

单壁碳纳米管对莱茵衣藻光合产氢的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
94-101
栏目:
生物与环境
出版日期:
2019-01-09

文章信息/Info

Title:
Effects of single-walled carbon nanotubes on photosynthetic hydrogen production in Chlamydomonas reinhardtii
作者:
叶珂祯 王宗秀 陈熙 张炜
南京农业大学生命科学学院, 江苏 南京 210095
Author(s):
YE Kezhen WANG Zongxiu CHEN Xi ZHANG Wei
College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
关键词:
单壁碳纳米管电子传递光合产氢量莱茵衣藻
Keywords:
single-walled carbon nanotubeselectron transferphotosynthetic hydrogen productionChlamydomonas reinhardtii
分类号:
Q945.11
DOI:
10.7685/jnau.201804018
摘要:
[目的]研究单链DNA包裹前、后的单壁碳纳米管(SWCNT)对莱茵衣藻光合作用和光合产氢的影响,为利用藻类高效产氢提供新思路。[方法]对单壁碳纳米管进行单链DNA修饰,利用光谱学等方法表征其理化性质。将单链DNA包裹前、后的单壁碳纳米管引入莱茵衣藻培养体系共孵育,观察单壁碳纳米管在衣藻细胞中的分布及其对衣藻光合作用和光合产氢的影响。[结果]单链DNA修饰可以增加单壁碳纳米管在溶液中的稳定性,减少纳米管团聚引起的衣藻细胞聚集。单链DNA包裹前、后的单壁碳纳米管对莱茵衣藻生长仅有轻微抑制。在缺硫条件下,与对照相比,2种形态单壁碳纳米管(ssDNA/SWCNT、SWCNT)均造成衣藻PSⅡ活性下降,呼吸速率显著高于光合速率,从而诱导衣藻细胞更快进入缺氧状态。2种形态单壁碳纳米管均可促进莱茵衣藻光合产氢,但未经包裹的单壁碳纳米管效果更加明显,可提高产氢量5倍以上。[结论]单链DNA包裹可提高单壁碳纳米管在溶液中的稳定性和分散性。单壁碳纳米管可通过影响PSⅡ活性和增强呼吸代谢的方式促进莱茵衣藻光合产氢。
Abstract:
[Objectives]In order to provide new strategy for efficient hydrogen production in Chlamydomonas reinhardtii,the effects of single-walled carbon nanotubes(SWCNT) on the photosynthesis and photosynthetic hydrogen production were studied. [Methods]SWCNT were modified with single strand DNA(ssDNA),and the physical-chemical properties of ssDNA/SWCNT were characterized. SWCNT and ssDNA/SWCNT were co-cultivated with C.reinhardtii,respectively,and the effects of the two types of SWCNT on the photosynthesis and H2 production were investigated. [Results]ssDNA could enhance the dispersion of SWCNT in solution and reduced C.reinhardtii cell aggregation,which was more significant under raw SWCNT treatment. Both of ssDNA/SWCNT and SWCNT slightly inhibited the growth of C.reinhardtii. In S-deprivation condition,two types of SWCNT could inhibit PSⅡ activity,and significantly promote the respiration rate. As a result,SWCNT treatments increased the photosynthetic H2 production in C.reinhardtii,and SWCNT could further promote H2 production by more than 5 times than the control. [Conclusions]ssDNA modification can improve the stability and dispersion of SWCNT in solution,and SWCNT could promote photosynthetic hydrogen production by inhibiting PSⅡ activity and enhancing respiratory metabolism in C.reinhardtii.

参考文献/References:

[1] Melis A. Photosynthetic H2 metabolism in Chlamydomonas reinhardtii(unicellular green algae)[J]. Planta,2007,226(5):1075-1086.
[2] 沈文飚,苏久厂,孙学军. 氢气植物学效应的研究进展[J]. 南京农业大学学报,2018,41(3):392-401. DOI:10.7685/jnau.201803059. Shen W B,Su J C,Sun X J. Research progress in the botanical effects of hydrogen gas[J]. Journal of Nanjing Agricultural University,2018,41(3):392-401(in Chinese with English abstract).
[3] Zhang L,Happe T,Melis A. Biochemical and morphological characterization of sulfur-deprivedand H2-producing Chlamydomonas reinhardtii(green alga)[J]. Planta,2002,214(4):552-561.
[4] Melis A,Zhang L,Forestier M,et al. Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii[J]. Plant Physiology,2000,122(1):127-136.
[5] Beckmann J,Lehr F,Finazzi G,et al. Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii[J]. Journal of Biotechnology,2009,142(1):70-77.
[6] Melanie O,Ian L R,Evan S,et al. RNAi knock-down of LHCBM1,2,and 3 increases photosynthetic H2 production efficiency of the green alga Chlamydomonas reinhardtii[J]. PLoS One,2013,8(4):e61375.
[7] Kruse O,Rupprecht J,Bader K P,et al. Improved photobiological H2 production in engineered green algal cells[J]. Journal of Biological Chemistry,2005,280(40):34170-34177.
[8] Yacoby I,Pochekailov S,Toporik H,et al. Photosynthetic electron partitioning between[Fe-Fe]-hydrogenase and ferredoxin:NADP+-oxidoreductase(FNR) enzymes in vitro[J]. Proc Natl Acad Sci USA,2011,108(23):9396-9401.
[9] Liu B,Wu C H,Miao J,et al. All inorganic semiconductor nanowire mesh for direct solar water splitting[J]. ACS Nano,2014,8(11):11739-11744.
[10] Svedrusiz D,Blackburn J L,Tenent R C,et al. High-performance hydrogen production and oxidation electrodes with hydrogenase supported on metallic single-wall carbon nanotube networks[J]. Journal of the American Chemical Society,2011,133(12):4299-4306.
[11] Liu Q,Chen B,Wang Q,et al. Carbon nanotubes as molecular transporters for walled plant cells[J]. Nano Letters,2009,9(3):1007-1010.
[12] Giraldo J P,Landry M P,Faltermeier S M,et al. Plantnanobionics approach to augment photosynthesis and biochemical sensing[J]. Nature Materials,2014,13(4):400-408.
[13] Zhang J,Boghossian A A,Barone P W,et al. Single molecule detection of nitric oxide enabled by d(AT) 15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes[J]. Journal of the American Chemical Society,2011,133(3):567-581.
[14] Liu R,Liu L,Liang J,et al. Detection of pH change in cytoplasm of live myocardial ischemia cells via the ssDNA-SWCNTs nanoprobes[J]. Analytical Chemistry,2014,86(6):3048-3052.
[15] Nakashima N,Okuzono S,Murakami H,et al. DNA dissolves single-walled carbon nanotubes in water[J]. Chemistry Letters,2003,32(5):456-457.
[16] Zheng M,Jagota A,Semke E D,et al. DNA-assisted dispersion and separation of carbon nanotubes[J]. Nature Materials,2003,2(5):338-342.
[17] Liu R,Chen Z,Zhao F,et al. Sorting the unique chirality,right handed single wall carbon nanotubes via the dye modified ssDNA[J]. Journal of Nanoscience and Nanotechnology,2011,11(8):7587-7592.
[18] Melis A,Neidhardt J,Benemann J R. Dunaliellasalina(Chlorophyta) with small chlorophyll antenna sizesexhibit higher photosynthetic productivities and photon use efficienciesthan normally pigmented cells[J]. Journal of Applied Phycology,1998,10(6):515-525.
[19] Williams R M,Taylor H K,Thomas J,et al. The effect of DNA and sodium cholate dispersed single-walled carbon nanotubes on the green algae Chlamydomonas reinhardtii[J]. Journal of Nanoscience,2014,2014:1-8.
[20] Clar J G,Gustitus S A,Youn S,et al. Unique toxicological behavior from single-wall carbon nanotubes separated via selective adsorption on hydrogels[J]. Environmental Science & Technology,2015,49(6):3913-3921.
[21] Makarova V V,Kosourov S,Krendeleva T E,et al. Photoproduction of hydrogen by sulfur-deprived C.reinhardtii mutants with impaired photosystem Ⅱ photochemical activity[J]. Photosynthesis Research,2007,94(1):79-89.
[22] Wu S,Yan G,Xu L,et al. Improvement of hydrogen production with expression of lba gene in chloroplast of Chlamydomonas reinhardtii[J]. International Journal of Hydrogen Energy,2010,35(24):13419-13426.
[23] Wu S,Li X,Yu J,et al. Increased hydrogen production in co-culture of Chlamydomonas reinhardtii and Bradyrhizobium japonicum[J]. Bioresource Technology,2012,123:184-188.
[24] Campbell D,Hurry V,Clarke A K,et al. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation[J]. Microbiology and Molecular Biology Reviews,1998,62(3):667-683.
[25] Kosourov S,Seibert M,Ghirardi M L. Effects of extracellular pH on the metabolic pathways in sulfur-deprived,H2-producing Chlamydomonas reinhardtii cultures[J]. Plant and Cell Physiology,2003,44(2):146-155.
[26] Kelley K,Pehrsson P E,Ericson L M,et al. Optical pH response of DNA wrapped HiPcocarbon nanotubes[J]. Journal of Nanoscience and Nanotechnology,2005,5(7):1041-1044.
[27] Chen C,Xie X X,Zhou Q,et al. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide[J]. Nanotechnology,2012,23(4):045104.
[28] Kumar A,Jena P K,Behera S,et al. Efficient DNA and peptide delivery by functionalized chitosan-coated single-wall carbon nanotubes[J]. Journal of Biomedical Nanotechnology,2005,1(4):392-396.
[29] Liu R,Liu L,Liang J,et al. Detection of pH change in cytoplasm of live Myocardial ischemia cells via the ssDNA-SWCNTs nanoprobes[J]. Analytical Chemistry,2014,86(6):3048-3052.
[30] Han J H,Paulus G L C,Maruyama R,et al. Exciton antennas and concentrators from core-shell and corrugated carbon nanotube filaments of homogeneous composition[J]. Nature Materials,2010,9(10):833-839.
[31] Schwab F,Bucheli T D,Lukhele L P,et al. Are carbon nanotube effects on green algae caused by shading and agglomeration?[J]. Environmental Science & Technology,2011,45(14):6136-6144.
[32] Youn S,Wang R,Gao J,et al. Mitigation of the impact of single-walled carbon nanotubes on a freshwater green algae:Pseudokirchneriella subcapitata[J]. Nanotoxicology,2012,6(2):161-172.
[33] Lambreva M D,Lavecchia T,Tyystjarvi E,et al. Potential of carbon nanotubes in algal biotechnology[J]. Photosynthesis Research,2015,125(3):451-471.

相似文献/References:

[1]姬长英,裴续,葛艳艳.单壁碳纳米管对纳米通道中离子电流影响的机制[J].南京农业大学学报,2019,42(1):184.[doi:10.7685/jnau.201804004]
 JI Changying,PEI Xu,GE Yanyan.Mechanism of the impact of single-walled carbon nanotubes on ionic current in a nano-channel[J].Journal of Nanjing Agricultural University,2019,42(1):184.[doi:10.7685/jnau.201804004]

备注/Memo

备注/Memo:
收稿日期:2018-04-10。
基金项目:国家自然科学基金项目(51572131);中央高校基本科研业务费专项资金(KJZ201743)
作者简介:叶珂祯,硕士研究生。
通信作者:张炜,教授,研究发向为植物细胞程序性死亡与蛋白质工程,E-mail:wzhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01