[1]姚瑶,李龙龙,姜志浩,等.棕榈酸对BRL-3A细胞胰岛素抵抗和脂代谢的影响[J].南京农业大学学报,2019,42(1):130-136.[doi:10.7685/jnau.201807042]
 YAO Yao,LI Longlong,JIANG Zhihao,et al.Effect of palmitic acid on insulin resistance and lipid metabolism in BRL-3A cells[J].Journal of Nanjing Agricultural University,2019,42(1):130-136.[doi:10.7685/jnau.201807042]
点击复制

棕榈酸对BRL-3A细胞胰岛素抵抗和脂代谢的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
130-136
栏目:
动物科学
出版日期:
2019-01-09

文章信息/Info

Title:
Effect of palmitic acid on insulin resistance and lipid metabolism in BRL-3A cells
作者:
姚瑶 李龙龙 姜志浩 马海田
南京农业大学动物医学院/农业农村部动物生理生化重点开放实验室, 江苏 南京 210095
Author(s):
YAO Yao LI Longlong JIANG Zhihao MA Haitian
College of Veterinary Medicine/Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
关键词:
棕榈酸BRL-3A细胞胰岛素抵抗脂代谢紊乱
Keywords:
palmitic acidBRL-3A cellsinsulin resistancelipid metabolism disorder
分类号:
S852.23
DOI:
10.7685/jnau.201807042
摘要:
[目的]分析不同浓度棕榈酸诱导对BRL-3A细胞(大鼠肝脏间质细胞)胰岛素抵抗和脂代谢的影响,为研究胰岛素抵抗发生的生物化学机制提供肝细胞模型。[方法]采用不同浓度(0、0.05、0.10、0.15、0.20和0.25 mmol·L-1)棕榈酸处理BRL-3A细胞,分别检测细胞活力、细胞死亡率、甘油三酯含量和葡萄糖消耗量;RT-qPCR法检测脂代谢相关基因表达;免疫印迹法检测胰岛素抵抗相关蛋白表达。[结果]与对照组相比,0.25 mmol·L-1棕榈酸处理12~48 h显著降低BRL-3A细胞活力,并显著增加其死亡率。0.15~0.25 mmol·L-1棕榈酸处理显著增加BRL-3A细胞中脂滴的堆积及甘油三酯含量,显著降低葡萄糖消耗量。0.15~0.25 mmol·L-1棕榈酸处理显著增加脂代谢合成相关基因表达,显著降低脂代谢分解相关基因和胰岛素抵抗相关蛋白的表达。[结论]0.15~0.25 mmol·L-1棕榈酸处理可诱发BRL-3A细胞发生脂代谢紊乱和胰岛素抵抗。考虑到剂量效应和细胞毒性,0.20 mmol·L-1棕榈酸处理BRL-3A细胞24 h可作为后续探讨胰岛素抵抗机制相关研究理想模型构建的最佳条件。
Abstract:
[Objectives]This study was aimed to investigate the effects of palmitic acid(PA) on insulin resistance and lipid metabolism in BRL-3A cells,which will provide a model for the further study of the biochemical mechanism of insulin resistance in rats. [Methods]BRL-3A cells were treated with concentrations of 0,0.05,0.10,0.15,0.20 and 0.25 mmol·L-1 PA. The cell viability,cell death rate,triglyceride content and glucose consumption were detected using a commercial kit. The lipid metabolism-related factors mRNA level was detected by RT-qPCR,and insulin resistance-related protein level was detected by Western blot. [Results]Compared with control group,the cell viability significantly decreased and cell death rate significantly increased in BRL-3A treated with 0.25 mmol·L-1 PA for 12-48 h. 0.15-0.25 mmol·L-1 PA treatment significantly increased lipid droplet accumulation and triglyceride content,while significantly reduced glucose consumption in BRL-3A cells. 0.15-0.25 mmol·L-1 PA treatment significantly increased the lipogenesis related factors mRNA level,while significantly reduced lipolysis related factors mRNA level and insulin resistance related proteins level. [Conclusions]0.15-0.25 mmol·L-1 PA treatment caused the insulin resistance and lipid metabolism disorder in BRL-3A cells. Considering the cell cytotoxicity and dose-dependent effect,the optimal condition for constructing model of insulin resistance was 0.20 mmol·L-1 PA treated for 24 h in BRL-3A cells,which will provide a model for studying the mechanism of insulin resistance in rats.

参考文献/References:

[1] Popov V B,Lim J K. Impact of insulin-sensitizing agents on risk for liver cancer and liver-related death in diabetic patients with compensated hepatitis c cirrhosis[J]. The Journal of Clinical Endocrinology & Metabolism,2011,96(8):2398-2400.
[2] Vocci F,Khalsa J H,Dobs A. Hormonal and metabolic disorders of human immunodeficiency virus infection and substance abuse[J]. American Journal of Infectious Diseases,2006,2(3):125-129.
[3] Morigny P,Houssier M,Mouisel E,et al. Adipocyte lipolysis and insulin resistance[J]. Biochimie,2016,125:259-266.
[4] Kautzky-Willer A,Handisurya A. Metabolic diseases and associated complications:sex and gender matter![J]. European Journal of Clinical Investigation,2009,39(8):631-648.
[5] Han T S,Lean M E. A clinical perspective of obesity,metabolic syndrome and cardiovascular disease[J]. JRSM Cardiovascular Disease,2016,5:1-13.
[6] Untereiner A,Wu L Y. Hydrogen sulfide and glucose homeostasis:a tale of sweet and the stink[J]. Antioxidants & Redox Signaling,2018,28(16):1463-1482.
[7] Lombarte M,Lupo M,Fina B L,et al. In vivo measurement of the rate constant of liver handling of glucose and glucose uptake by insulin-dependent tissues,using a mathematical model for glucose homeostasis in diabetic rats[J]. Journal of Theoretical Biology,2018,439:205-215.
[8] Buijs R M,Guerrero-Vargas N. Synchrony between suprachiasmatic nucleus-driven signals and the light/dark cycle is essential for liver homeostasis[J]. Hepatology,2017,65(6):2110-2112.
[9] Zhang H J,Ji B P,Chen G,et al. A combination of grape seed-derived procyanidins and gypenosides alleviates insulin resistance in mice and HepG2 cells[J]. Journal of Food Science,2009,74(1):1-7.
[10] Guo X R,Wang X L,Chen Y,et al. ANGPTL8/betatrophin alleviates insulin resistance via the Akt-GSK3β or Akt-FoxO1 pathway in HepG2 cells[J]. Experimental Cell Research,2016,345(2):158-167.
[11] Nelson B A,Robinson K A,Buse M G. High glucose and glucosamine induce insulin resistance via different mechanisms in 3T3-L1 adipocytes[J]. Diabetes,2000,49(6):981-991.
[12] Pardo V,González-Rodríguez á,Muntané J,et al. Role of hepatocyte S6K1 in palmitic acid-induced endoplasmic reticulum stress,lipotoxicity,insulin resistance and in oleic acid-induced protection[J]. Food & Chemical Toxicology,2015,80:298-309.
[13] Kwak H J,Choi H E,Cheon H G. 5-LO inhibition ameliorates palmitic acid-induced ER stress,oxidative stress and insulin resistance via AMPK activation in murine myotubes[J]. Scientific Reports,2017,7(1):5025-5029.
[14] Talukder M A H,Preda M,Ryzhova L,et al. Heterozygous caveolin-3 mice show increased susceptibility to palmitate-induced insulin resistance[J]. Physiological Reports,2016,4(6):e12736.
[15] Poitout V,Robertson R P. Glucolipotoxicity:fuel excess and β-cell dysfunction[J]. Endocrine Reviews,2008,29(3):351-366.
[16] Jia G H,Demarco V G,Sowers J R. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy[J]. Nature Reviews Endocrinology,2016,12(3):144-153.
[17] Samuel V T,Shulman G I. The pathogenesis of insulin resistance:integrating signaling pathways and substrate flux[J]. Journal of Clinical Investigation,2016,126(1):12-22.
[18] Yun K J,Han K,Kim M K,et al. Insulin resistance distribution and cut-off value in Koreans from the 2008-2010 Korean national health and nutrition examination survey[J]. PLoS One,2016,11(4):e0154593.
[19] Liang Y,Tan A,Liang D,et al. Low osteocalcin level is a risk factor for impaired glucose metabolism in a chinese male population[J]. Journal of Diabetes Investigation,2016,7(4):522-528.
[20] Reaven G M,Huffman B B. Abnormalaties of carbohydrate metabolism may play a role in the etiology and clinical course of hypertension[J]. Trends in Pharmacological Sciences,1988,9(3):78-79.
[21] 韩玲玲,李佳,陈颖,等. 高脂环境对大鼠成肌细胞糖脂代谢的影响[J]. 中国病理生理杂志,2011,27(11):2156-2159. Han L L,Li J,Chen Y,et al. Influence of high-fat environment on glucose metabolism in rat myoblasts[J]. Chinese Journal of Pathophysiology,2011,27(11):2156-2159(in Chinese with English abstract).
[22] 柳嘉,郭孝萱,吴薇,等. 高糖高脂诱导胰岛素抵抗HepG2细胞模型的建立及活性成分的功能评价[J]. 食品科技,2012,37(3):73-78. Liu J,Guo X X,Wu W,et al. Establishment of the insulin resistance HepG2 cell model with elevated levels of glucose and free fatty acid and functional evaluation of active compounds[J]. Food Science and Technology,2012,37(3):73-78(in Chinese with English abstract).
[23] 温宇,王宏伟,卢慧玲,等. 脂肪酸诱导的3T3-L1脂肪细胞胰岛素抵抗的研究[J]. 中国病理生理杂志,2007,23(3):543-547. Wen Y,Wang H W,Lu H L,et al. Fatty acid-induced insulin resistance in 3T3-L1 adipocytes[J]. Chinese Journal of Pathophysiology,2007,23(3):543-547(in Chinese with English abstract).
[24] Mehlem A,Hagberg C E,Muhl L,et al. Imaging of neutral lipids by oil red O for analyzing the metabolic status in health and disease[J]. Nature Protocols,2013,8(6):1149-1154.

备注/Memo

备注/Memo:
收稿日期:2018-07-20。
基金项目:国家自然科学基金项目(31572483)
作者简介:姚瑶,硕士研究生。
通信作者:马海田,教授,博导,研究方向为营养生物化学,E-mail:mahaitian@njau.edu.cn。
更新日期/Last Update: 1900-01-01