[1]姬长英,裴续,葛艳艳.单壁碳纳米管对纳米通道中离子电流影响的机制[J].南京农业大学学报,2019,42(1):184-189.[doi:10.7685/jnau.201804004]
 JI Changying,PEI Xu,GE Yanyan.Mechanism of the impact of single-walled carbon nanotubes on ionic current in a nano-channel[J].Journal of Nanjing Agricultural University,2019,42(1):184-189.[doi:10.7685/jnau.201804004]
点击复制

单壁碳纳米管对纳米通道中离子电流影响的机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年1期
页码:
184-189
栏目:
食品与工程
出版日期:
2019-01-09

文章信息/Info

Title:
Mechanism of the impact of single-walled carbon nanotubes on ionic current in a nano-channel
作者:
姬长英 裴续 葛艳艳
南京农业大学工学院, 江苏 南京 210031
Author(s):
JI Changying PEI Xu GE Yanyan
College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
关键词:
纳米通道单壁碳纳米管离子电流纳米农业检测传感器
Keywords:
nano-channelsingle-walled carbon nanotubesionic currentnano agricultural detection sensor
分类号:
TB383
DOI:
10.7685/jnau.201804004
摘要:
[目的]对纳米通道中离子电流调制机制的理解,是发展纳米农业检测传感器的关键。[方法]采用分子动力学模拟的方法,研究受限纳米通道中单壁碳纳米管的荷电量对离子电流阻塞的影响。[结果]仿真结果表明:电中性的单壁碳纳米管进入通道中时产生的阻塞电流始终小于基准电流。在碳纳米管带电荷且荷电量增加的情况下,当溶液浓度较低时,阻塞电流大于基准电流;当溶液浓度较高时,阻塞电流小于基准电流,出现电流交叉现象。[结论]单壁碳纳米管过孔时其体积占位对电渗流的影响以及其本身荷电量对纳米通道中离子浓度的影响相互竞争,共同决定着纳米通道中的离子电流。
Abstract:
[Objectives]Understanding the mechanism of ionic current modulation in nano-channels is the key to the development of nano agricultural detection sensors. [Methods]Molecular dynamics simulation was used to study the impact of charge density of single-walled carbon nanotubes on the ionic current blockades in a confined nano-channel. [Results]The simulation results indicated that when an electrically neutral single-walled carbon nanotubes entered the nano-channel,the blockade current was always less than the reference current. With increasing charge number on the carbon nanotube,and at lower solution concentrations,the blockade current was greater than the reference current. When the solution concentration was high,the blockade current was less than the reference current,and the phenomenon of current crossover occurred. [Conclusions]The effect of the volume occupied by the single-walled carbon nanotubes on electroosmosis and the effect of their own charge on the ion concentration in the nano-channel compete with each other,and together determine the ionic current in the nano-channel.

参考文献/References:

[1] Bhagat D,Samanta S K,Bhattacharya S. Efficient management of fruit pests by pheromone nanogels[J]. Scientific Reports,2013,3:1294.
[2] Ali M A,Rehman I,Iqbal A,et al. Nanotechnology:a new frontier in agriculture[J]. Advancements in Life Sciences,2014,1(3):129-138.
[3] Huang S W,Wang L,Liu L M,et al. Nanotechnology in agriculture,livestock,and aquaculture in China:a review[J]. Agronomy for Sustainable Development,2015,35(2):369-400.
[4] Mukhopadhyay S S. Nanotechnology in agriculture:prospects and constraints[J]. Nanotechnology,Science and Applications,2014,7:63-71.
[5] Wu H W,Chen Y H,Zhou Q Z,et al. Translocation of rigid rod-shaped virus through various solid-state nanopores[J]. Analytical Chemistry,2016,88:2502-2510.
[6] Nivala J,Marks D B,Akeson M. Unfoldase-mediated protein translocation through an α-hemolysin nanopore[J]. Nature Biotechnology,2013,31(3):247-250.
[7] Rotem D,Jayasinghe L,Salichou M,et al. Protein detection by nanopores equipped with aptamers[J]. Journal of the American Chemical Society,2012,134(5):2781-2787.
[8] di Marino D,Bonome E L,Tramontano A,et al. All-atom molecular dynamics simulation of protein translocation through an α-hemolysin nanopore[J]. The Journal of Physical Chemistry Letters,2015,6(15):2963-2968.
[9] Goyal G,Freedman K J,Kim M J. Gold nanoparticle translocation dynamics and electrical detection of single particle diffusion using solid-state nanopores[J]. Analytical Chemistry,2013,85(17):8180-8187.
[10] Qiu Y H,Yang C,Hinkle P,et al. Anomalous mobility of highly charged particles in pores[J]. Analytical Chemistry,2015,87(16):8517-8523.
[11] Yang C,Liu L,Zeng T,et al. Highly sensitive simultaneous detection of lead(Ⅱ) and barium(Ⅱ) with G-quadruplex DNA in α-hemolysin nanopore[J]. Analytical Chemistry,2013,85(15):7302-7307.
[12] Zhang Y,Liu L,Sha J J,et al. Nanopore detection of DNA molecules in magnesium chloride solutions[J]. Nanoscale Research Letters,2013,8(1):245.
[13] Smeets R M M,Keyser U F,Krapf D,et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores[J]. Nano Letters,2006,6(1):89-95.
[14] Lv W P,Chen M D,Wu R A. The impact of the number of layers of a graphene nanopore on DNA translocation[J]. Soft Matter,2013,9(3):960-966.
[15] Mazzone V,Melchionna S,Marconi U M B. Steric modulation of ionic currents in DNA translocation through nanopores[J]. Journal of Statistical Physics,2015,158(5):1181-1194.
[16] Assad O N,di Fiori N,Squires A H,et al. Two color DNA barcode detection in photoluminescence suppressed silicon nitride nanopores[J]. Nano Letters,2015,15:745-752.
[17] Cherf G M,Lieberman K R,Rashid H,et al. Automated forward and reverse ratcheting of DNA in a nanopore at 5-? precision[J]. Nature Biotechnology,2012,30:344-348.
[18] Manrao E A,Derrington I M,Laszlo A H,et al. Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase[J]. Nature Biotechnology,2012,30:349-353.
[19] McMullen A,de Haan H W,Tang J X,et al. Stiff filamentous virus translocations through solid-state nanopores[J]. Nature Communications,2014,5:4171.
[20] McNally B,Singer A,Yu Z L,et al. Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays[J]. Nano Letters,2010,10:2237-2244.
[21] Zanjani M B,Engelke R E,Lukes J R,et al. Up and down translocation events and electric double-layer formation inside solid-state nanopores[J]. Physical Review E,2015,92(2):022715.
[22] Ge Y Y,Zhu J,Kang M,et al. Ion current rectification in a confined conical nanopore with high solution concentrations[J]. Molecular Simulation,2016,42(11):942-947.
[23] Bródka A,Sliwiński P. Three-dimensional Ewald method with correction term for a system periodic in one direction[J]. Journal of Chemical Physics,2004,120(12):5518-5523.
[24] Sun D K,Wang Y,Dong A P,et al. A three-dimensional quantitative study on the hydrodynamic focusing of particles with the immersed boundary-Lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer,2016,94:306-315.
[25] Berendsen H J C,Postma J P M,van Gunsteren W F,et al. Molecular dynamics with coupling to an external bath[J]. Journal of Chemical Physics,1984,81(8):3684-3690.
[26] Puscasu R M,Todd B D,Daivis P J,et al. An extended analysis of the viscosity kernel for monatomic and diatomic fluids[J]. Journal of Physics:Condensed Matter,2010,22(19):195105.

相似文献/References:

[1]叶珂祯,王宗秀,陈熙,等.单壁碳纳米管对莱茵衣藻光合产氢的影响[J].南京农业大学学报,2019,42(1):94.[doi:10.7685/jnau.201804018]
 YE Kezhen,WANG Zongxiu,CHEN Xi,et al.Effects of single-walled carbon nanotubes on photosynthetic hydrogen production in Chlamydomonas reinhardtii[J].Journal of Nanjing Agricultural University,2019,42(1):94.[doi:10.7685/jnau.201804018]

备注/Memo

备注/Memo:
收稿日期:2018-04-03。
基金项目:国家自然科学基金项目(51505233);中央高校基本科研业务费专项资金(KYZ201558,KJQN201622);江苏省重点研发计划项目(SBE2015310266)
作者简介:姬长英,教授,博导,主要研究领域为新型农业机械理论技术、智能化机械装备等,E-mail:chyji@njau.edu.cn。
通信作者:姬长英,教授,博导,主要研究领域为新型农业机械理论技术、智能化机械装备等,E-mail:chyji@njau.edu.cn。
更新日期/Last Update: 1900-01-01