[1]张红生,程金平,王健康,等.水稻种子活力相关基因鉴定及分子调控机制[J].南京农业大学学报,2019,42(2):191-200.[doi:10.7685/jnau.201807015]
 ZHANG Hongsheng,CHENG Jinping,WANG Jiankang,et al.Advances in identification of genes related to seed vigor and molecular mechanism in regulation in rice[J].Journal of Nanjing Agricultural University,2019,42(2):191-200.[doi:10.7685/jnau.201807015]
点击复制

水稻种子活力相关基因鉴定及分子调控机制()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年2期
页码:
191-200
栏目:
特约综述
出版日期:
2019-03-19

文章信息/Info

Title:
Advances in identification of genes related to seed vigor and molecular mechanism in regulation in rice
作者:
张红生 程金平 王健康 詹成芳
南京农业大学作物遗传与种质创新国家重点实验室/江苏省现代作物生产协同创新中心, 江苏 南京 210095
Author(s):
ZHANG Hongsheng CHENG Jinping WANG Jiankang ZHAN Chengfang
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
关键词:
水稻种子活力基因克隆分子机制
Keywords:
riceseed vigorgene cloningmolecular mechanisms
分类号:
S511
DOI:
10.7685/jnau.201807015
摘要:
水稻是我国最重要的粮食作物。种子活力是多基因控制的数量性状,提高水稻种子活力对我国目前水稻轻简栽培模式推广,实现水稻高产、优质、高效生产具有重要意义。本文从水稻种子活力评价指标、种子活力关键基因鉴定和克隆、种子活力调控的分子机制等方面综述了近年来的主要研究进展。基于分子标记技术、全基因组关联分析、高通量测序技术和组学技术等已经克隆了23个种子活力关键基因,包括转录因子基因和脱落酸(ABA)、赤霉素(GA)2种植物激素代谢相关的基因等,通过2种激素的代谢平衡控制种子胚的成熟、种子休眠、种子萌发和幼苗生长等过程,为利用分子设计育种技术改良水稻种子活力提供基础。
Abstract:
Rice is the most important food crop in China. Rice seed vigor is a complex quantitative trait controlled by multiple genes and it is of great significance to improve rice seed vigor for high yield,quality and efficiency of production under direct seedling rice. This paper reviewed the main research advances including evaluation index,gene identification and cloning,molecular regulation mechanism relate to rice seed vigor in recent years. Based on the molecular markers and map-based cloning,genome-wide association study(GWAS),high throughput sequencing,and omics techonology,more than twenty-three key genes related to seed vigor have been cloned,including transcription factor genes,metabolism-related genes of plant hormone ABA and GA. Through the balance of ABA and GA metabolism,it regulates maturing of embryos,seed dormancy and germination,seedling growth. It will be very helpful to improve genetics of rice seed vigor by molecular design breeding technology in the future.

参考文献/References:

[1] 孙群,王建华,孙宝启. 种子活力的生理和遗传机理研究进展[J]. 中国农业科学,2007,40(1):48-53. Sun Q,Wang J H,Sun B Q. Advances on seed vigor physiological and genetic mechanisms[J]. Scientia Agricultura Sinica,2007,40(1):48-53(in Chinese with English abstract).
[2] 张红生,胡晋. 种子学[M]. 2版. 北京:科学出版社,2015. Zhang H S,Hu J. Seed Science[M]. 2nd ed. Beijing:Science Press,2015(in Chinese).
[3] 张安鹏,钱前,高振宇. 水稻种子活力的研究进展[J]. 中国水稻科学,2018,32(3):296-303. Zhang A P,Qian Q,Gao Z Y. Research advances on rice seed vigor[J]. Chinese Journal of Rice Science,2018,32(3):296-303(in Chinese with English abstract).
[4] Han C,Yang P F. Studies on the molecular mechanisms of seed germination[J]. Proteomics,2015,15(10):1671-1679.
[5] Bewley J,Bradford K,Hilhorst H,et al. Seeds:Physiology of Development,Germination and Dormancy[M]. New York:Springer,2013.
[6] Wei T,He Z L,Tan X Y,et al. An integrated RNA-Seq and network study reveals a complex regulation process of rice embryo during seed germination[J]. Biochemical and Biophysical Research Communications,2015,464(1):176-181.
[7] 李振华,王建华. 种子活力与萌发的生理与分子机制研究进展[J]. 中国农业科学,2015,48(4):646-660. Li Z H,Wang J H. Advances in research of physiological and molecular mechanism in seed vigor and germination[J]. Scientia Agricultura Sinica,2015,48(4):646-660(in Chinese with English abstract).
[8] Bewley J. Seed germination and dormancy[J]. The Plant Cell,1997,9:1055-1066.
[9] Zhu G H,Ye N H,Zhang J H,et al. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis[J]. Plant and Cell Physiology,2009,50(3):644-651.
[10] Nakashima K,Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development[J]. Plant Cell Reports,2013,32(7):959-970.
[11] Yang P F,Li X J,Wang X Q,et al. Proteomic analysis of rice(Oryza sativa) seeds during germination[J]. Proteomics,2007,7(18):3358-3368.
[12] Catusse J,Job C,Job D. Transcriptome-and proteome-wide analyses of seed germination[J]. Comptes Rendus Biologies,2008,331(10):815-822.
[13] Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci controlling rice seed germination under salt stress[J]. Euphytica,2011,178(3):297-307.
[14] Wang Z F,Wang J F,Bao Y M,et al. Quantitative trait loci analysis for rice seed vigor during the germination stage[J]. J Zhejiang Univ Sci B,2010,11(12):958-964.
[15] Li M,Sun P L,Zhou H J,et al. Identification of quantitative trait loci associated with germination using chromosome segment substitution lines of rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2011,123(3):411-420.
[16] Shi Y Y,Gao L L,Wu Z C,et al. Genome-wide association study of salt tolerance at the seed germination stage in rice[J]. BMC Plant Biology,2017,17:92.
[17] Xie L X,Tan Z W,Zhou Y,et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. Journal of Integrative Plant Biology,2014,56(8):749-759.
[18] Zhao Y,Zhao W P,Jiang C H,et al. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS[J]. Frontiers in Plant Science,2018,9:332.
[19] Lu Q,Zhang M C,Niu X J,et al. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping[J]. Planta,2016,243(3):645-657.
[20] Cheng J P,He Y Q,Yang B,et al. Association mapping of seed germination and seedling growth at three conditions in indica rice(Oryza sativa L.)[J]. Euphytica,2015,206(1):103-115.
[21] Xu C G,Li X Q,Xue Y,et al. Comparison of quantitative trait loci controlling seedling characteristics at two seedling stages using rice recombinant inbred lines[J]. Theoretical and Applied Genetics,2004,109(3):640-647.
[22] Yu J,Zao W G,He Q,et al. Genome-wide association study and gene set analysis for understanding candidate genes involved in salt tolerance at the rice seedling stage[J]. Molecular Genetics and Genomics,2017,292(6):1391-1403.
[23] Sabouri H,Rezai A M,Moumeni A,et al. QTLs mapping of physiological traits related to salt tolerance in young rice seedlings[J]. Biologia Plantarum,2009,53(4):657-662.
[24] Guo Z L,Yang W N,Chang Y,et al. Genome-wide association studies of image traits reveal genetic architecture of drought resistance in rice[J]. Molecular Plant,2018,11(6):789-805.
[25] Li L F,Liu X,Xie K,et al. qLTG-9,a stable quantitative trait locus for low-temperature germination in rice(Oryza sativa L.)[J]. Theoretical and Applied Genetics,2013,126(9):2313-2322.
[26] Fujino K,Sekiguchi H,Matsuda Y,et al. Molecular identification of a major quantitative trait locus,qLTG3-1,controlling low-temperature germinability in rice[J]. Proc Natl Acad Sci USA,2008,105(34):12623-12628.
[27] He Y Q,Cheng J P,Li X D,et al. Acquisition of desiccation tolerance during seed development is associated with oxidative processes in rice[J]. Botany,2016,94(2):91-101.
[28] Dang X J,Thi T G T,Dong G S,et al. Genetic diversity and association mapping of seed vigor in rice(Oryza sativa L.)[J]. Planta,2014,239(6):1309-1319.
[29] Cheng X X,Cheng J P,Huang X,et al. Dynamic quantitative trait loci analysis of seed reserve utilization during three germination stages in rice[J]. PLoS One,2013,8(11):e80002.
[30] Wu J H,Feng F J,Lian X M,et al. Genome-wide association study(GWAS) of mesocotyl elongation based on re-sequencing approach in rice[J]. BMC Plant Biology,2015,15:218.
[31] Wang D,Liu J L,Li C G,et al. Genome-wide association mapping of cold tolerance genes at the seedling stage in rice[J]. Rice,2016,9(1):61.
[32] Wang L,Cheng J P,Lai Y Y,et al. Identification of QTLs with additive,epistatic and QTL×development interaction effects for seed dormancy in rice[J]. Planta,2014,239(2):411-420.
[33] Gu X Y,Liu T L,Feng J H,et al. The qSD12 underlying gene promotes abscisic acid accumulation in early developing seeds to induce primary dormancy in rice[J]. Plant Molecular Biology,2010,73(1/2):97-104.
[34] Hori K,Sugimoto K,Nonoue Y,et al. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars[J]. Theoretical and Applied Genetics,2010,120(8):1547-1557.
[35] Takeuchi Y,Lin S Y,Sasaki T,et al. Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice[J]. Theoretical and Applied Genetics,2003,107(7):1174-1180.
[36] Lin S Y,Sasaki T,Yano M. Mapping quantitative trait loci controlling seed dormancy and heading date in rice,Oryza sativa L.,using backcross inbred lines[J]. Theoretical and Applied Genetics,1998,96(8):997-1003.
[37] Marzougui S,Sugimoto K,Yamanouchi U,et al. Mapping and characterization of seed dormancy QTLs using chromosome segment substitution lines in rice[J]. Theoretical and Applied Genetics,2012,124(5):893-902.
[38] Zhang A P,Liu C L,Chen G,et al. Genetic analysis for rice seedling vigor and fine mapping of a major QTL qSSL1b for seedling shoot length[J]. Breeding Science,2017,67(3):307-315.
[39] Guo X L,Hou X M,Fang J,et al. The rice GERMINATION DEFECTIVE1,encoding a B3 domain transcriptional repressor,regulates seed germination and seedling development by integrating GA and carbohydrate metabolism[J]. The Plant Journal,2013,75(3):403-416.
[40] Hobo T,Kowyama Y,Hattori T. A bZIP factor,TRAB1,interacts with VP1 and mediates abscisic acid-induced transcription[J]. Proc Natl Acad Sci USA,1999,96(26):15348-15353.
[41] Sugimoto K,Takeuchi Y,Ebana K,et al. Molecular cloning of Sdr4,a regulator involved in seed dormancy and domestication of rice[J]. Proc Natl Acad Sci USA,2010,107(13):5792-5797.
[42] Gu X Y,Foley M E,Horvath D P,et al. Association between seed dormancy and pericarp color is controlled by a pleiotropic gene that regulates abscisic acid and flavonoid synthesis in weedy red rice[J]. Genetics,2011,189(4):1515-1524.
[43] Ye H,Feng J H,Zhang L H,et al. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice[J]. Plant Physiology,2015,169:2152-2165.
[44] Yang X,Gong P,Li K Y,et al. A single cytosine deletion in the OsPLS1 gene encoding vacuolar-type H+-ATPase subunit A1 leads to premature leaf senescence and seed dormancy in rice[J]. Journal of Experimental Botany,2016,67(9):2761-2776.
[45] Abe A,Takagi H,Fujibe T,et al. OsGA20ox1,a candidate gene for a major QTL controlling seedling vigor in rice[J]. Theoretical and Applied Genetics,2012,125(4):647-657.
[46] Song S,Dai X,Zhang W H. A rice F-box gene,OsFbx352,is involved in glucose-delayed seed germination in rice[J]. Journal of Experimental Botany,2012,63(15):5559-5568.
[47] Zhao L F,Hu Y B,Chong K,et al. ARAG1,an ABA-responsive DREB gene,plays a role in seed germination and drought tolerance of rice[J]. Annals of Botany,2010,105(3):401-409.
[48] Liu C W,Fukumoto T,Matsumoto T,et al. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination[J]. Plant Physiology and Biochemistry,2013,63:151-158.
[49] Wu J H,Zhu C F,Pang J H,et al. OsLOL1,a C2C2-type zinc finger protein,interacts with OsbZIP58 to promote seed germination through the modulation of gibberell in biosynthesis in Oryza sativa[J]. The Plant Journal,2014,80(6):1118-1130.
[50] Li Z Y,Tang L Q,Qiu J H,et al. Serine carboxypeptidase 46 regulates grain filling and seed germination in rice(Oryza sativa L.)[J]. PLoS One,2016,11(7):e0159737.
[51] Bhatnagar N,Min M K,Choi E H,et al. The protein phosphatase 2C clade A protein OsPP2C51 positively regulates seed germination by directly inactivating OsbZIP10[J]. Plant Molecular Biology,2017,93(4/5):389-401.
[52] Kim H,Hwang H,Hong J W,et al. A rice orthologue of the ABA receptor,OsPYL/RCAR5,is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth[J]. Journal of Experimental Botany,2012,63(2):1013-1024.
[53] Tian X J,Wang Z Y,Li X F,et al. Characterization and functional analysis of pyrabactin resistance-like abscisic acid receptor family in rice[J]. Rice,2015,8(1):28.
[54] Kaur H,Petla B P,Kamble N U,et al. Differentially expressed seed aging responsive heat shock protein OsHSP18.2 implicates in seed vigor,longevity and improves germination and seedling establishment under abiotic stress[J]. Frontiers in Plant Science,2015,6:e00713.
[55] Wei Y D,Xu H B,Diao L R,et al. Protein repair l-isoaspartyl methyltransferase 1(PIMT1) in rice improves seed longevity by preserving embryo vigor and viability[J]. Plant Molecular Biology,2015,89(4/5):475-492.
[56] Petla B P,Kamble N U,Kumar M,et al. Rice proteinl-I soaspartyl methyltransferase isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity[J]. New Phytologist,2016,211(2):627-645.
[57] Wang X,Zou B H,Shao Q L,et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. Journal of Experimental Botany,2018,69(3):413-421.
[58] Xu E S,Chen M M,He H,et al. Proteomic analysis reveals proteins involved in seed imbibition under salt stress in rice[J]. Frontiers in Plant Science,2017,7:e2006.
[59] He Y Q,Cheng J P,He Y,et al. Influence of isopropylmalate synthase OsIPMS1 on seed vigor associated with amino acid and energy metabolism in rice[J]. Plant Biotechnology Journal,2019,17(2):322-337.
[60] Magwa R A,Zhao H,Xing Y Z. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice(Oryza sativa L.)[J]. BMC Genetics,2016,17(1):28.
[61] Lu Q,Niu X J,Zhang M C,et al. Genome-wide association study of seed dormancy and the genomic consequences of improvement footprints in rice(Oryza sativa L.)[J]. Frontiers in Plant Science,2018,8:e02213.
[62] Hsu S K,Tung C W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice[J]. Rice,2015,8(1):38.
[63] Sano N,Ono H,Murata K,et al. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice[J]. Journal of Experimental Botany,2015,66(13):4035-4046.
[64] Howell K A,Narsai R,Carroll A,et al. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process[J]. Plant Physiology,2009,149(2):961-980.
[65] Dametto A,Sperotto R A,Adamski J M,et al. Cold tolerance in rice germinating seeds revealed by deep RNAseq analysis of contrasting indica genotypes[J]. Plant Science,2015,238:1-12.
[66] He D L,Han C,Yang P F. Gene expression profile changes in germinating rice[J]. Journal of Integrative Plant Biology,2011,53(10):835-844.
[67] He D L,Han C,Yao J L,et al. Constructing the metabolic and regulatory pathways in germinating rice seeds through proteomic approach[J]. Proteomics,2011,11(13):2693-2713.
[68] Han C,Yang P F,Sakata K,et al. Quantitative proteomics reveals the role of protein phosphorylation in rice embryos during early stages of germination[J]. Journal of Proteome Research,2014,13(3):1766-1782.
[69] Liu S J,Xu H H,Wang W Q,et al. A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment[J]. Physiologia Plantarum,2015,154(1):142-161.
[70] Liu S J,Xu H H,Wang W Q,et al. Identification of embryo proteins associated with seed germination and seedling establishment in germinating rice seeds[J]. Journal of Plant Physiology,2016,196/197:79-92.
[71] Xu H H,Liu S J,Song S H,et al. Proteomics analysis reveals distinct involvement of embryo and endosperm proteins during seed germination in dormant and non-dormant rice seeds[J]. Plant Physiology and Biochemistry,2016,103:219-242.
[72] Cheng J P,Wang L,Zeng P,et al. Identification of genes involved in rice seed priming in the early imbibition stage[J]. Plant Biology,2017,19(1):61-69.

相似文献/References:

[1]张辰明,徐烨红,赵海娟,等.不同氮形态对水稻苗期氮素吸收和根系生长的影响[J].南京农业大学学报,2011,34(3):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
 ZHANG Chen-ming,XU Ye-hong,ZHAO Hai-juan,et al.Effects of different nitrogen forms on nitrogen uptake and root growth of rice at the seedling stage[J].Journal of Nanjing Agricultural University,2011,34(2):72.[doi:10.7685/j.issn.1000-2030.2011.03.013]
[2]郝文雅,沈其荣,冉炜,等.西瓜和水稻根系分泌物中糖和氨基酸对西瓜枯萎病病原菌生长的影响[J].南京农业大学学报,2011,34(3):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
 HAO Wen-ya,SHEN Qi-rong,RAN Wei,et al.The effects of sugars and amino acids in watermelon and rice root exudates on the growth of Fusarium oxysporum f.sp. niveum[J].Journal of Nanjing Agricultural University,2011,34(2):77.[doi:10.7685/j.issn.1000-2030.2011.03.014]
[3]徐小飒,刘喜,赵志刚,等.培矮64S/93-11重组自交系分子图谱构建及千粒重QTL检测[J].南京农业大学学报,2011,34(1):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
 XU Xiao-sa,LIU Xi,ZHAO Zhi-gang,et al.Construction of genetic linkage map based on a RILs population derived from the hybrid rice Peiai 64S/93-11 and detection of QTL for 1000-grain weight[J].Journal of Nanjing Agricultural University,2011,34(2):8.[doi:10.7685/j.issn.1000-2030.2011.01.002]
[4]魏广彬,徐海港,丁艳峰,等.水稻设计栽培系统的研制与实现[J].南京农业大学学报,2011,34(1):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
 WEI Guang-bin,XU Hai-gang,DING Yan-feng,et al.Development and realization of the rice design cultivation system[J].Journal of Nanjing Agricultural University,2011,34(2):14.[doi:10.7685/j.issn.1000-2030.2011.01.003]
[5]李刚华,王惠芝,王绍华,等.穗肥对水稻穗分化期碳氮代谢及颖花数的影响[J].南京农业大学学报,2010,33(1):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
 LI Gang-hua,WANG Hui-zhi,WANG Shao-hua,et al.Effect of nitrogen applied at rice panicle initiation stage on carbon and nitrogen metabolism and spikelets per panicle[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.01.001]
[6]王碧茜,范晓荣,徐国华,等.不同氮效率水稻品种旗叶的衰老特征[J].南京农业大学学报,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
 WANG Bi-qian,FAN Xiao-rong,XU Guo-hua,et al.Characteristics of flag leaf senescence among three rice cultivars with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):8.[doi:10.7685/j.issn.1000-2030.2010.02.002]
[7]赵成国,徐海港,李刚华,等.超高产单季粳稻抽穗期群体构成研究[J].南京农业大学学报,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
 ZHAO Cheng-guo,XU Hai-gang,LI Gang-hua,et al.Studies on population composition of super-high-yielding single-cropping japonica rice in heading stage[J].Journal of Nanjing Agricultural University,2011,34(2):23.[doi:10.7685/j.issn.1000-2030.2011.02.005]
[8]陈志德,仲维功,王军,等.水稻苗期Cd2+胁迫的QTL定位研究[J].南京农业大学学报,2010,33(3):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
 CHEN Zhi-de,ZHONG Wei-gong,WANG Jun,et al.Mapping of QTL of tolerance to Cd^{2+} stress at seedling stage in rice(Oryza sativa L.)[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.03.001]
[9]叶利庭,樊剑波,徐晔红,等.不同氮效率水稻的生长特性[J].南京农业大学学报,2010,33(3):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
 YE Li-ting,FAN Jian-bo,XU Ye-hong,et al.Characteristics of growth in rice genotypes with different nitrogen use efficiency[J].Journal of Nanjing Agricultural University,2010,33(2):77.[doi:10.7685/j.issn.1000-2030.2010.03.015]
[10]晋玉宽,杨世湖,余丽,等.不同启动子驱动下Pib基因的表达及与稻瘟病抗性的关系[J].南京农业大学学报,2010,33(4):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]
 JIN Yu-kuan,YANG Shi-hu,YU Li,et al.Expression and resistance analysis of the Pib gene in transgenic rice under different promoters[J].Journal of Nanjing Agricultural University,2010,33(2):1.[doi:10.7685/j.issn.1000-2030.2010.04.001]

备注/Memo

备注/Memo:
收稿日期:2018-7-5。
基金项目:江苏省科技支撑计划(农业)重点资助项目(BE2016380);国家自然科学基金青年基金项目(31601387)
作者简介:张红生,教授,博导,从事水稻抗逆遗传育种与种业科学研究,E-mail:hszhang@njau.edu.cn。
通信作者:张红生,教授,博导,从事水稻抗逆遗传育种与种业科学研究,E-mail:hszhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01