ZENG Aisong,LI Jiayi,LI Ying,et al.Exploring differentially expressed genes of isolated microspore under heat shock in cabbage[J].Journal of Nanjing Agricultural University,2019,42(2):236-245.[doi:10.7685/jnau.201803041]





Exploring differentially expressed genes of isolated microspore under heat shock in cabbage
曾爱松1 李家仪2 李英3 宋立晓1 侯喜林3 严继勇1
1. 江苏省农业科学院蔬菜研究所/江苏省高效园艺作物遗传改良重点实验室, 江苏 南京 210014;
2. 中国农业大学生物学院, 北京 100094;
3. 南京农业大学作物遗传与种质创新国家重点实验室, 江苏 南京 210095
ZENG Aisong1 LI Jiayi2 LI Ying3 SONG Lixiao1 HOU Xilin3 YAN Jiyong1
1. Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China;
2. College of Biological Sciences, China Agricultural University, Beijing 100094, China;
3. State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
cabbageheat shocksomatic embryogenesisgenes expression profilingisolated microspore culture
[目的] 本文旨在探讨结球甘蓝游离小孢子培养早期体胚发生的分子机制,分析游离小孢子在热激处理下的基因表达谱。[方法] 将易出胚结球甘蓝高代自交系611单核靠边期小孢子分别在体外32.5℃培养1 d(热激处理,E2)、体内正常生长1 d(对照组1,E3)及体外25℃培养1 d(对照组2,E5),利用转录组测序技术(RNA-Seq)对3个处理的小孢子文库进行差异基因表达谱分析,并鉴定热激处理下早期体胚发生的响应基因。[结果] 将3个处理的小孢子UniGene表达量依次进行两两相比,即E2 vs E3、E2 vs E5以及E3 vs E5,分别鉴定出2 506、1 073和3 322个差异表达基因。基因本体(gene ontology,GO)聚类分析表明,热激处理下的差异表达基因显著富集到细胞组分中的细胞部件、细胞及细胞器;在分子功能中,这些基因在结合、催化活性及核酸结合转录因子活性中的比例最高;在生物过程中的细胞过程、代谢过程及刺激反应等类别中的比例也最高。京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes,KEGG)通路分析显示,热激处理下的差异表达基因显著富集到植物激素信号转导、植物病原互作、淀粉和糖代谢、抗坏血酸代谢、苯丙氨酸代谢以及多糖降解等途径。进一步对抗坏血酸代谢途径相关基因进行分析,抗坏血酸过氧化物酶基因APX1APX2,半乳糖脱氢酶基因GalDH以及乙醛脱氢酶基因AD在体外32.5℃培养1 d后均显著上调表达。[结论] 通过转录组学方法揭示了结球甘蓝游离小孢子在热激处理下基因组的表达变化,鉴定了可能与早期体胚发生相关的抗坏血酸代谢途径基因,为进一步研究甘蓝小孢子体胚发生的分子机制奠定了基础。
[Objectives] In order to investigate the molecular mechanism of early somatic embryogenesis in isolated microspore culture(IMC) of cabbage,the gene expression profile of isolated microspores under heat shock was analyzed.[Methods] The microspore at late uninucleate stage of a high-responsive inbred line of cabbage 611 was cultured for 1 day at 32.5℃(heat shock treatment,E2),1 day in vivo(control 1,E3),and 1 day at 25℃(control 2,E5). The differentially expressed genes(DEG) profiles of three microspore libraries were analyzed by transcriptome sequencing(RNA-Seq),and the response genes of early somatic embryogenesis under heat shock treatment were identified.[Results] The comparisons of UniGene expression of the isolated microspore among E2 vs E3,E2 vs E5,and E3 vs E5 indicated that 2 506,1 073 and 3 322 DEG were identified. Gene ontology(GO) clustering analysis revealed that DEG under heat shock treatment was significantly enriched in cell part,cell and organelle in cell component,binding,catalytic activity and nucleic acid binding transcription factor activity in molecular function,cellular process,metabolic process and response to stimulus in biological processe,etc.. Kyoto encyclopedia of genes and genomes(KEGG) pathway analysis indicated that DEG was significantly involved in the multiple processes of plant hormone signal transduction,plant-pathogen interaction,starch and sucrose metabolism,ascorbate and aldarate metabolism,phenylpropanoid biosynthesis,and other glycan degradation,etc.. Furthermore,L-ascorbate peroxidase 1 gene(APX1),L-ascorbate peroxidase 2 gene(APX2),L-galactose dehydrogenase gene(GalDH) and aldehyde dehydrogenase(AD) gene which were related to ascorbate and aldarate metabolism were up-regulated significantly culturing 1 day at 32.5℃. The results showed that these genes might play an important role during embryogenesis in IMC.[Conclusions] The study revealed the changes of genome expression of isolated microspore of cabbage under heat shock treatment by transcriptome,and identified the ascorbic acid metabolic pathway genes that may be related to early somatic embryogenesis,which laid a foundation for further study on the molecular mechanism of microspore somatic embryogenesis in cabbage.


[1] 王炜,杨随庄. 高等植物小孢子胚发生的启动[J]. 生物技术通报,2011(1):14-20. Wang W,Yang S Z. The initiation of microspore embryogenesis in higher plants[J]. Biotechnology Bulletin,2011(1):14-20(in Chinese with English abstract).
[2] 袁素霞,孙继峰,刘玉梅,等. 植物游离小孢子胚胎形成机理[J]. 生物技术通报,2011(10):7-16. Yuan S X,Sun J F,Liu Y M,et al. Mechanisms of microspore embryogenesis induction and embryo formation[J]. Biotechnology Bulletin,2011(10):7-16(in Chinese with English abstract).
[3] Soriano M,Li H,Boutilier K. Microspore embryogenesis:establishment of embryo identity and pattern in culture[J]. Plant Reproduction,2013,26(3):181-196.
[4] Hosp J,Tashpulatov A,Roessner U,et al. Transcriptional and metabolic profiles of stress-induced,embryogenic tobacco microspores[J]. Plant Molecular Biology,2006,63(1):137-149.
[5] Malik M R,Wang F,Dirpaul J M,et al. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus[J]. Plant Physiology,2007,144(1):134-154.
[6] Tsuwamoto R,Fukuoka H,Takahata Y. Identification and characterization of genes expressed in early embryogenesis from microspores of Brassica napus[J]. Planta,2007,225(3):641-652.
[7] Sánchez-Díaz R A,Castillo A M,Vallés M P. Microspore embryogenesis in wheat:new marker genes for early,middle and late stages of embryo development[J]. Plant Reproduction,2013,26(3):287-296.
[8] Joosen R,Cordewener J,Supena E D J,et al. Combined transcriptome and proteome analysis identifies pathways and markers associated with the establishment of rapeseed microspore-derived embryo development[J]. Plant Physiology,2007,144(1):155-172.
[9] Maraschin S D F,Caspers M,Potokina E,et al. cDNA array analysis of stress-induced gene expression in barley androgenesis[J]. Physiologia Plantarum,2006,127(4):535-550.
[10] Munoz-Amatriain M,Svensson J T,Castillo A M,et al. Transcriptome analysis of barley anthers:effect of mannitol treatment on microspore embryogenesis[J]. Physiologia Plantarum,2006,127(4):551-560.
[11] Fan Z,Armstrong K C,Keller W A. Development of microspores in vivo and in vitro in Brassica napus L.[J]. Protoplasma,1988,147(2/3):191-199.
[12] Telmer C A,Newcomb W,Simmonds D H. Microspore development in Brassica napus and the effect of high temperature on division in vivo and in vitro[J]. Protoplasma,1993,172(2/3/4):154-165.
[13] Soriano M,Li H,Boutilier K. Microspore embryogenesis:establishment of embryo identity and pattern in culture[J]. Plant Reproduction,2013,26(3):181-196.
[14] McCormick S. Male gametophyte development[J]. The Plant Cell,1993,5(10):1265.
[15] Pulido A,Bakos F,Devic M,et al. HvPG1 and ECA1:two genes activated transcriptionally in the transition of barley microspores from the gametophytic to the embryogenic pathway[J]. Plant Cell Reports,2009,28(4):551-559.
[16] Noctor G,Foyer C H. ASCORBATE AND GLUTATHIONE:keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49(1):249-279.
[17] Pignocchi C,Foyer C H. Apoplastic ascorbate metabolism and its role in the regulation of cell signalling[J]. Current Opinion in Plant Biology,2003,6(4):379-389.
[18] Miyagawa Y,Tamoi M,Shigeoka S. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli[J]. Plant and Cell Physiology,2000,41(3):311-320.
[19] Kim Y H,Lim S,Han S H,et al. Expression of both CuZnSOD and APX in chloroplasts enhances tolerance to sulfur dioxide in transgenic sweet potato plants[J]. Comptes Rendus Biologies,2015,338(5):307-313.
[20] Bartwal A,Arora S. Drought stress-induced enzyme activity and mdar and apx gene expression in tolerant and susceptible genotypes of Eleusine coracana(L.)[J]. In Vitro Cellular & Developmental Biology-Plant,2017,53(1):41-49.
[21] Yan H,Li Q,Park S C,et al. Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato[J]. Plant Physiology and Biochemistry,2016,109:20-27.
[22] [AKZ·]ur I,Dubas E,Golemiec E,et al. Stress-related variation in antioxidative enzymes activity and cell metabolism efficiency associated with embryogenesis induction in isolated microspore culture of triticale(x Triticosecale Wittm.)[J]. Plant Cell Reports,2009,28(8):1279-1287.
[23] Uvá? ková? L,Taká? T,Boehm N,et al. Proteomic and biochemical analysis of maize anthers after cold pretreatment and induction of androgenesis reveals an important role of anti-oxidative enzymes[J]. Journal of Proteomics,2012,75(6):1886-1894.
[24] Zeng A S,Yan J Y,Song L X,et al. Effects of ascorbic acid and embryogenic microspore selection on embryogenesis in white cabbage(Brassica oleracea L. var. capitata)[J]. The Journal of Horticultural Science and Biotechnology,2015,90(6):607-612.
[25] Zeng A S,Song L X,Cui Y H,et al. Reduced ascorbate and reduced glutathione improve embryogenesis in broccoli microspore culture[J]. South African Journal of Botany,2017,109:275-280.


 HE Na,YE Xiaofeng,LI Liqian,et al.Effects of different stress treatments on γ-aminobutyric acid(GABA)content in cabbage[J].Journal of Nanjing Agricultural University,2013,36(2):111.[doi:10.7685/j.issn.1000-2030.2013.06.018]
 ZENG Aisong,GAO Bing,SONG Lixiao,et al.Cytological analysis of microspore embryogenesis in white cabbage (Brassica oleracea L.var.capitata)isolated microspore culture[J].Journal of Nanjing Agricultural University,2014,37(2):47.[doi:10.7685/j.issn.1000-2030.2014.05.008]


更新日期/Last Update: 1900-01-01