[1]张松,鲍海波,张建华,等.亚致死剂量噻虫嗪对日本弓背蚁觅食和亲系识别能力的影响[J].南京农业大学学报,2019,42(2):270-275.[doi:10.7685/jnau.201806038]
 ZHANG Song,BAO Haibo,ZHANG Jianhua,et al.A sublethal dose of thiamethoxam impaired the foraging and discrimination ability of the ant Camponotus japonicus[J].Journal of Nanjing Agricultural University,2019,42(2):270-275.[doi:10.7685/jnau.201806038]
点击复制

亚致死剂量噻虫嗪对日本弓背蚁觅食和亲系识别能力的影响()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年2期
页码:
270-275
栏目:
植物科学
出版日期:
2019-03-19

文章信息/Info

Title:
A sublethal dose of thiamethoxam impaired the foraging and discrimination ability of the ant Camponotus japonicus
作者:
张松 鲍海波 张建华 张懿熙 刘泽文
南京农业大学植物保护学院, 江苏 南京 210095
Author(s):
ZHANG Song BAO Haibo ZHANG Jianhua ZHANG Yixi LIU Zewen
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
关键词:
行为学新烟碱类杀虫剂亚致死剂量日本弓背蚁
Keywords:
behaviorsneonicotinoid insecticidesublethal doseCamponotus japonicus
分类号:
S433.112
DOI:
10.7685/jnau.201806038
摘要:
[目的] 研究亚致死剂量噻虫嗪对日本弓背蚁觅食和亲系识别能力的损害,重点观察通过个体交流传递杀虫剂的影响。[方法] 通过模拟觅食情景,观察农药处理对日本弓背蚁觅食能力的影响;通过Y形管试验和EAG(electroantennography)试验,观察农药处理对亲系识别能力的影响;通过攻击行为试验,观察农药处理对异种蚂蚁识别能力的影响。[结果] 农药直接处理和通过个体交流获得的间接处理,均导致蚂蚁招募行为的丧失;2种处理对同巢蚂蚁的识别能力无统计学差异,但显著影响对异巢蚂蚁的识别能力;在对异种蚂蚁的攻击行为和巢穴保护方面,仅直接处理组出现显著影响。[结论] 亚致死剂量噻虫嗪可以直接影响日本弓背蚁的觅食和亲系识别能力;而且通过个体间的信息交流,农药对社会行为的影响可以传递给其他未直接接触到药剂的蚂蚁,从而影响日本弓背蚁的种群发展。
Abstract:
[Objectives] The sublethal effects of thiamethoxam,a neonicotinoid insecticide,were evaluated on the foraging and discrimination behaviors of the ant Camponotus japonicus,with special attention on the indirect effects through individual communication among ants.[Methods] By simulating the foraging situation,the change of foraging ability of ant in different treated groups was observed. Through the Y-tube test and EAG(electroantennography) test,the ability of different treated groups of ants to the nestmates and non-nestmates was observed. Based on the changes in the discrimination ability,the ability of different treatment groups of ants to discriminate the heterologous ants was observed in the aggressive behavior test.[Results] There was no significant difference in the ability of different treated ants to find food,but there was a difference in foraging efficiency. The control ants performed recruiting behavior,while the indirectly treated ants and the directly treated ants did not. The control ants showed difference to indirectly treated ants and directly treated ants in discriminating the nestmates and non-nestmate,the control ants could discriminate the non-mates well,but the others couldn’t discriminate the non-nestmates well. When discriminating the nestmates,there was no significant difference among different treated ants. In the attack tests,the direct treatment with sublethal thiamethoxam remarkably reduced the aggressive behavior when compared to the control ants. However,the aggressive behavior of indirectly treated ants showed no significant differences from control and directly treated ants.[Conclusions] The sublethal thiamethoxam can directly affect the foraging and discrimination ability of the ants. Through the communications between the ants,the directly treated ants can deliver these negative effects to others which have not been directly exposed to insecticides. The treated ants affect the development of colony of the ants.

参考文献/References:

[1] Brown L A,Ihara M,Buckingham S D,et al. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors[J]. Journal of Neurochemistry,2006,99(2):608-615.
[2] Barbieri R F,Lester P J,Miller A S,et al. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants[J]. Proceedings of the Royal Society B,2013,280(1772):20132157.
[3] Blacquière T,Smagghe G,van Gestel C A M,et al. Neonicotinoids in bees:a review on concentrations,side-effects and risk assessment[J]. Ecotoxicology,2012,21(4):973-992.
[4] Giurfa M. Cognition with few neurons:higher-order learning in insects[J]. Trends in Neurosciences,2013,36(5):285-294.
[5] Wu M C,Chang Y W,Lu K H,et al. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage[J]. Insect Biochemistry & Molecular Biology,2017,88:12-20.
[6] Whitehorn P R,O’connor S,Wackers F L,et al. Neonicotinoid pesticide reduces bumble bee colony growth and queen production[J]. Science,2012,336(6079):351-352.
[7] Yan H,Simola D F,Bonasio R,et al. Eusocial insects as emerging models for behavioural epigenetics[J]. Nature Reviews Genetics,2014,15(10):677-688.
[8] Thiel S,K?hler H R. A sublethal imidacloprid concentration alters foraging and competition behaviour of ants[J]. Ecotoxicology,2016,25(4):814-823.
[9] Chomicki G,Renner S S. Obligate plant farming by a specialized ant[J]. Nature Plants,2016,2(12):16181.
[10] Mersch D P,Cyespi A,Keller L. Tracking individuals shows spatial fidelity is a key regulator of ant social organization[J]. Science,2013,340(6136):1090-1093.
[11] LeBoeuf A C,Waridel P,Brent C S,et al. Oral transfer of chemical cues,growth proteins and hormones in social insects[J]. eLife,2016,5:e20375.
[12] Greene M J,Pinter-Wollman N,Gordon D M. Interactions with combined chemical cues inform harvester ant foragers’ decisions to leave the nest in search of food[J]. PLoS One,2013,8(1):e52219.
[13] Udiani O,Pinter-Wollman N,Kang Y. Identifying robustness in the regulation of collective foraging of ant colonies using an interaction-based model with backward bifurcation[J]. Journal of Theoretical Biology,2015,367:61-75.
[14] Guerrieri F J,D’Ettorre P. The mandible opening response:quantifying aggression elicited by chemical cues in ants[J]. Journal of Experimental Biology,2008,211(7):1109-1113.
[15] Guerrieri F J,Nehring V,J?rgensen C G,et al. Ants recognize foes and not friends[J]. Proceedings of the Royal Society B,2009,276(1666):2461-2468.
[16] Sharma K R,Enzmann B L,Schmidt Y,et al. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna[J]. Cell Reports,2015,12(8):1261-1271.
[17] Yew J Y,Chung H. Insect pheromones:an overview of function,form,and discovery[J]. Progress in Lipid Research,2015,59:88-105.
[18] Cremer S,Armitage S A O,Schmid-Hempel P. Social immunity[J]. Current Biology,2007,17(16):R693-R702.
[19] D’Ettorre P,Heinze J. Individual recognition in ant queens[J]. Current Biology,2005,15(23):2170-2174.
[20] Ozaki M,Wada-Katsumata A,Fujikawa K,et al. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum[J]. Science,2005,309(5732):311-314.
[21] Zhang R,Wang B,Grossi G,et al. Molecular basis of alarm pheromone detection in aphids[J]. Current Biology,2017,27(1):55-61.
[22] Couvillon M J,Schürch R,Ratnieks F L W. Waggle dance distances as integrative indicators of seasonal foraging challenges[J]. PLoS One,2014,9(4):e93495.
[23] Riley J R,Greggers U,Smith A D,et al. The flight paths of honeybees recruited by the waggle dance[J]. Nature,2005,435(7039):205-207.
[24] Bouchebti S,Ferrere S,Vittori K,et al. Contact rate modulates foraging efficiency in leaf cutting ants[J]. Scientific Reports,2015,5:18650.
[25] Choe D H,Rust M K. Horizontal transfer of insecticides in laboratory colonies of the Argentine ant(Hymenoptera:Formicidae)[J]. Journal of Economic Entomology,2008,101(4):1397-1405.
[26] Hernández López J,Riessberger-Gallé U,Crailsheim K,et al. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honey bee queens[J]. Molecular Ecology,2017,26(11):3062-3073.
[27] Leonhardt S D,Menzel F,Nehring V,et al. Ecology and evolution of communication in social insects[J]. Cell,2016,164(6):1277-1287.

相似文献/References:

[1]高聪芬,牛春东,王利祥,等.昆虫瞬时感受器电位(TRP)通道研究进展[J].南京农业大学学报,2017,40(5):769.[doi:10.7685/jnau.201702007]
 GAO Congfen,NIU Chundong,WANG Lixiang,et al.Advances in insect transient receptor potential(TRP)channels[J].Journal of Nanjing Agricultural University,2017,40(2):769.[doi:10.7685/jnau.201702007]

备注/Memo

备注/Memo:
收稿日期:2018-6-26。
基金项目:国家自然科学基金项目(31772185);国家科技支撑计划项目(2012BAD19B01)
作者简介:张松,硕士研究生。
通信作者:张懿熙,副教授,研究方向为杀虫剂神经毒理学,E-mail:zhangyixi@njau.edu.cn。
更新日期/Last Update: 1900-01-01