[1]张绍铃,贾璐婷,王利斌,等.园艺作物果实液泡糖、酸转运与转化研究进展[J].南京农业大学学报,2019,42(4):583-593.[doi:10.7685/jnau.201812019]
 ZHANG Shaoling,JIA Luting,WANG Libin,et al.Recent advance on vacuolar sugar and acid transportation and conversion in horticultural fruit[J].Journal of Nanjing Agricultural University,2019,42(4):583-593.[doi:10.7685/jnau.201812019]
点击复制

园艺作物果实液泡糖、酸转运与转化研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年4期
页码:
583-593
栏目:
综述
出版日期:
2019-07-08

文章信息/Info

Title:
Recent advance on vacuolar sugar and acid transportation and conversion in horticultural fruit
作者:
张绍铃 贾璐婷 王利斌 张臻
南京农业大学园艺学院, 江苏 南京 210095
Author(s):
ZHANG Shaoling JIA Luting WANG Libin ZHANG Zhen
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
液泡糖、酸转运载体质子泵转化
Keywords:
vacuolesugar and acid transportersproton pumpsconversion
分类号:
Q945.18
DOI:
10.7685/jnau.201812019
摘要:
糖、酸是果实风味的重要组成部分。作为糖、酸等代谢物的主要贮藏场所,液泡在园艺作物果实风味形成过程中起重要作用。液泡中糖、酸组成受膜载体转运特性及液泡内代谢酶催化特性的协同影响。本文总结了园艺作物果实液泡膜糖、酸转运载体类型及其转运特性,探讨了质子泵在液泡糖、酸积累过程中的作用,并对液泡内糖、酸转化的研究进展进行了概述。在此基础之上,整合并构建了园艺作物果实液泡糖、酸转运与转化的初级模型,以期为后续研究提供指导。
Abstract:
Sugar and acid are important contributors to fruit flavor. As the primary storage organelle for sugar and acid,vacuole plays an important role in the formation of flavor in fruit of horticultural crops. The composition of sugar and acid in vacuole is determined by characteristic of transporters on the tonoplast as well as catalytic feature of enzymes inside the vacuole. In this review,information on the type and characteristic of vacuolar sugar and acid transporters in horticultural fruit was summarized firstly;subsequently,the role of proton pump during sugar and acid transportation was discussed;finally,sugar and acid conversion in vacuole was also described. Based on this,the primary model of sugar and acid transportation and conversion in the vacuole from horticultural fruit was integrated and constructed in order to provide clue for further study.

参考文献/References:

[1] 乔军,刘富中,陈钰辉,等. 园艺作物果形遗传研究进展[J]. 园艺学报,2011,38(7):1385-1396. Qiao J,Liu F Z,Chen Y H,et al. Research progress on inheritance of fruit shape in horticultural crops[J]. Acta Horticulturae Sinica,2011,38(7):1385-1396(in Chinese with English abstract).
[2] Gao L,Zhao S J,Lu X Q,et al. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon[J]. PLoS One,2018,13(1):e0190096.
[3] Yao S X,Cao Q,Xie J,et al. Alteration of sugar and organic acid metabolism in postharvest granulation of Ponkan fruit revealed by transcriptome profiling[J]. Postharvest Biology and Technology,2018,139:2-11.
[4] Agius C,von Tucher S,Poppenberger B,et al. Quantification of sugars and organic acids in tomato fruits[J]. MethodsX,2018,5:537-550.
[5] Shen C W,Li Y,Wang J,et al. Potassium influences expression of key genes involved in sorbitol metabolism and its assimilation in pear leaf and fruit[J]. Journal of Plant Growth Regulation,2018,37(3):883-895.
[6] Yamaki S. Metabolism and accumulation of sugars translocated to fruit and their regulation[J]. Journal of the Japanese Society for Horticultural Science,2010,79(1):1-15.
[7] Etienne A,Génard M,Lobit P,et al. What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J]. Journal of Experimental Botany,2013,64(6):1451-1469.
[8] Shiratake K,Martinoia E. Transporters in fruit vacuoles[J]. Plant Biotechnology,2007,24(1):127-133.
[9] Martinoia E,Meyer S,de Angeli A,et al. Vacuolar transporters in their physiological context[J]. Annual Review of Plant Biology,2012,63(1):183-213.
[10] Feng C Y,Han J X,Han X X,et al. Genome-wide identification,phylogeny,and expression analysis of the SWEET gene family in tomato[J]. Gene,2015,573(2):261-272.
[11] Zeng L,Wang Z,Vainstein A,et al. Cloning,localization,and expression analysis of a new tonoplast monosaccharide transporter from Vitis vinifera L.[J]. Journal of Plant Growth Regulation,2011,30(2):199-212.
[12] Afoufa-Bastien D,Medici A,Jeauffre J,et al. The Vitis vinifera sugar transporter gene family:phylogenetic overview and macroarray expression profiling[J]. BMC Plant Biology,2010,10(1):245.
[13] Cheng R,Cheng Y S,Lü J H,et al. The gene PbTMT4 from pear(Pyrus bretschneideri)mediates vacuolar sugar transport and strongly affects sugar accumulation in fruit[J]. Physiologia Plantarum,2018,164(3):307-319.
[14] Cheng J T,Wen S Y,Xiao S,et al. Overexpression of the tonoplast sugar transporter CmTST2 in melon fruit increases sugar accumulation[J]. Journal of Experimental Botany,2018,69(3):511-523.
[15] 郑乾明. 甜橙糖转运子基因分离及其在果实糖积累中的功能研究[D]. 武汉:华中农业大学,2015. Zheng Q M. Isolation and functional characterization of sugar transporter genes during fruit sugar accumulation of sweet orange[D]. Wuhan:Huazhong Agricultural University,2015(in Chinese with English abstract).
[16] Zanon L,Falchi R,Hackel A,et al. Expression of peach sucrose transporters in heterologous systems points out their different physiological role[J]. Plant Science,2015,238:262-272.
[17] 许海峰,曲常志,刘静轩,等. 苹果液泡膜蔗糖转运蛋白基因MdSUT4的表达分析与功能鉴定[J]. 园艺学报,2017,44(7):1235-1243. Xu H F,Qu C Z,Liu J X,et al. Expression analysis and functional identification of a vacuolar sucrose transporter gene MdSUT4 in apple[J]. Acta Horticulturae Sinica,2017,44(7):1235-1243(in Chinese with English abstract).
[18] Liu R L,Li B Q,Qin G Z,et al. Identification and functional characterization of a tonoplast dicarboxylate transporter in tomato(Solanum lycopersicum)[J]. Frontiers in Plant Science,2017,8:186.
[19] 张燕子. 不同苹果糖酸组成及苹果酸转运体功能研究[D]. 杨凌:西北农林科技大学,2010. Zhang Y Z. Carbohydrates and organic acids composition of different apple genotypes and the role of malate transporter[D]. Yangling:Northwest A&F University,2010(in Chinese with English abstract).
[20] Ma B Q,Liao L,Zheng H Y,et al. Genes encoding aluminum-activated malate transporter Ⅱ and their association with fruit acidity in apple[J]. The Plant Genome,2015,8(3):1-14.
[21] de Angeli A,Baetz U,Francisco R,et al. The vacuolar channel VvALMT9 mediates malate and tartrate accumulation in berries of Vitis vinifera[J]. Planta,2013,238(2):283-291.
[22] Ye J,Wang X,Hu T X,et al. An InDel in the promoter of Al-ACTIVATED MALATE TRANSPORTER9 selected during tomato domestication determines fruit malate contents and aluminum tolerance[J]. The Plant Cell,2017,29(9):2249-2268.
[23] Shimada T,Nakano R,Shulaev V,et al. Vacuolar citrate/H+ symporter of citrus juice cells[J]. Planta,2006,224(2):472-480.
[24] Zheng Q M,Tang Z,Xu Q,et al. Isolation,phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange(Citrus sinensis)[J]. Plant Cell,Tissue and Organ Culture(PCTOC),2014,119(3):609-624.
[25] Schulz A,Beyhl D,Marten I,et al. Proton-driven sucrose symport and antiport are provided by the vacuolar transporters SUC4 and TMT1/2[J]. The Plant Journal,2011,68(1):129-136.
[26] Aluri S,Büttner M. Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering[J]. Proc Natl Acad Sci USA,2007,104(7):2537-2542.
[27] Schneider S,Beyhl D,Hedrich R,et al. Functional and physiological characterization of Arabidopsis INOSITOL TRANSPORTER1,a novel tonoplast-localized transporter for myo-inositol[J]. The Plant Cell,2008,20(4):1073-1087.
[28] Yamada K,Osakabe Y,Mizoi J,et al. Functional analysis of an Arabidopsis thaliana abiotic stress-inducible facilitated diffusion transporter for monosaccharides[J]. Journal of Biological Chemistry,2010,285(2):1138-1146.
[29] Klemens P A W,Patzke K,Trentmann O,et al. Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination[J]. New Phytologist,2014,202(1):188-197.
[30] 马新立,秦源,魏晓钰,等. 苹果糖转运蛋白TMT基因的表达及其与糖积累的关系[J]. 园艺学报,2014,41(7):1317-1325. Ma X L,Qin Y,Wei X Y,et al. Sequence and expression analysis of apple tonoplast monosaccharide transporter TMT genes and their relationship with sugar accumulation in fruit[J]. Acta Horticulturae Sinica,2014,41(7):1317-1325(in Chinese with English abstract).
[31] Cakir B,Giachino R R. VvTMT2 encodes a putative tonoplast monosaccharide transporter expressed during grape berry(Vitis vinifera cv. Sultanine)ripening[J]. Plant Omics,2012,5(6):576-583.
[32] Wormit A,Trentmann O,Feifer I,et al. Molecular identification and physiological characterization of a novel monosaccharide transporter from Arabidopsis involved in vacuolar sugar transport[J]. The Plant Cell,2006,18(12):3476-3490.
[33] Jung B,Ludewig F,Schulz A,et al. Identification of the transporter responsible for sucrose accumulation in sugar beet taproots[J]. Nature Plants,2015,1(1):14001.
[34] 许海峰,刘静轩,王意程,等. 苹果液泡膜葡萄糖转运蛋白基因MdVGT1的克隆与表达分析[J]. 中国农业科学,2016,49(23):4584-4592. Xu H F,Liu J X,Wang Y C,et al. Isolation and expression analysis of a vacuolar glucose transporter gene MdVGT1 in apple[J]. Scientia Agricultura Sinica,2016,49(23):4584-4592(in Chinese with English abstract).
[35] Reuscher S,Akiyama M,Yasuda T,et al. The sugar transporter inventory of tomato:genome-wide identification and expression analysis[J]. Plant and Cell Physiology,2014,55(6):1123-1141.
[36] Antony E,Taybi T,Courbot M,et al. Cloning,localization and expression analysis of vacuolar sugar transporters in the CAM plant Ananas comosus(pineapple)[J]. Journal of Experimental Botany,2008,59(7):1895-1908.
[37] Schneider S,Hulpke S,Schulz A,et al. Vacuoles release sucrose via tonoplast-localised SUC4-type transporters[J]. Plant Biology,2012,14(2):325-336.
[38] 康爽,贺红霞,王铭,等. 杏蔗糖转运蛋白基因PaSUC4的获得及其生物信息学分析[J]. 生物技术进展,2016,6(2):105-112. Kang S,He H X,Wang M,et al. The acquisition and bioinformatic analysis of sucrose transporter protein gene PaSUC4 from apricot[J]. Current Biotechnology,2016,6(2):105-112(in Chinese with English abstract).
[39] Miao H X,Sun P G,Liu Q,et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana[J]. Scientific Reports,2017,7:3536.
[40] Guo W J,Nagy R,Chen H Y,et al. SWEET17,a facilitative transporter,mediates fructose transport across the tonoplast of arabidopsis roots and leaves[J]. Plant Physiology,2014,164(2):777-789.
[41] Chong J L,Piron M C,Meyer S,et al. The SWEET family of sugar transporters in grapevine:VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany,2014,65(22):6589-6601.
[42] Wei X Y,Liu F L,Chen C,et al. The Malus domestica sugar transporter gene family:identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Frontiers in Plant Science,2014,5:569.
[43] Meyer S,Scholz-Starke J,de Angeli A,et al. Malate transport by the vacuolar AtALMT6 channel in guard cells is subject to multiple regulation[J]. The Plant Journal,2011,67(2):247-257.
[44] Zhang J B. Functional and structural characterization of the vacuolar anion channels AtALMT9 and AtALMT4 in Arabidopsis thaliana[D]. Zurich:University of Zurich,2014.
[45] Brune A,Gonzalez P,Goren R,et al. Citrate uptake into tonoplast vesicles from acid lime(Citrus aurantifolia)juice cells[J]. Journal of Membrane Biology,1998,166(3):197-203.
[46] Emmerlich V,Linka N,Reinhold T,et al. The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier[J]. Proc Natl Acad Sci USA,2003,100(19):11122-11126.
[47] 巫伟峰. 李果实苹果酸转运体的克隆表达及其有机酸的关联性分析[D]. 福州:福建农林大学,2017. Wu W F. Cloning and expression analysis of malate transporter in plum fruit and analysis of the correlation of organic acids[D]. Fuzhou:Fujian Agriculture and Forestry University,2017(in Chinese with English abstract).
[48] Oleski N,Mahdavi P,Bennett A B. Transport properties of the tomato fruit tonoplast:Ⅱ. Citrate transport[J]. Plant Physiology,1987,84(4):997-1000.
[49] Kovermann P,Meyer S,Hörtensteiner S,et al. The Arabidopsis vacuolar malate channel is a member of the ALMT family[J]. The Plant Journal,2007,52(6):1169-1180.
[50] Martinoia E,Maeshima M,Neuhaus H E. Vacuolar transporters and their essential role in plant metabolism[J]. Journal of Experimental Botany,2007,58(1):83-102.
[51] Hosaka M,Kanayama Y,Shiratake K,et al. Tonoplast H+-ATPase of mature pear fruit[J]. Phytochemistry,1994,36(3):565-567.
[52] Suzuki Y,Kanayama Y,Shiratake K,et al. Vacuolar H+-pyrophosphatase purified from pear fruit[J]. Phytochemistry,1999,50(4):535-539.
[53] Lu X P,Liu Y Z,Zhou G F,et al. Identification of organic acid-related genes and their expression profiles in two pear(Pyrus pyrifolia)cultivars with difference in predominant acid type at fruit ripening stage[J]. Scientia Horticulturae,2011,129(4):680-687.
[54] Etienne C,Moing A,Dirlewanger E,et al. Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation:involvement in regulating peach fruit acidity[J]. Physiologia Plantarum,2002,114(2):259-270.
[55] Amemiya T,Kanayama Y,Yamaki S,et al. Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation[J]. Planta,2006,223(6):1272-1280.
[56] Dong Q L,Liu D D,An X H,et al. MdVHP1 encodes an apple vacuolar H+-PPase and enhances stress tolerance in transgenic apple callus and tomato[J]. Journal of Plant Physiology,2011,168(17):2124-2133.
[57] 李绍佳. CitERF13与CitVHA-c4协同调控柑橘果实柠檬酸代谢研究[D]. 杭州:浙江大学,2016. Li S J. Research on regulation of the citric acid metabolism in citrus fruit by CitERF13 and CitVHA-c4[D]. Hangzhou:Zhejiang University,2016(in Chinese with English abstract).
[58] Yao Y X,Dong Q L,You C X,et al. Expression analysis and functional characterization of apple MdVHP1 gene reveals its involvement in Na+,malate and soluble sugar accumulation[J]. Plant Physiology and Biochemistry,2011,49(10):1201-1208.
[59] Jia D J,Shen F,Wang Y,et al. Apple fruit acidity is genetically diversified by natural variations in three hierarchical epistatic genes:MdSAUR37,MdPP2CH and MdALMTⅡ[J]. The Plant Journal,2018,95(3):427-443.
[60] Zhang C M,Bian Y,Hou S H,et al. Sugar transport played a more important role than sugar biosynthesis in fruit sugar accumulation during Chinese jujube domestication[J]. Planta,2018,248(5):1187-1199.
[61] Desnoues E,Génard M,Quilot-Turion B,et al. A kinetic model of sugar metabolism in peach fruit reveals a functional hypothesis of a markedly low fructose-to-glucose ratio phenotype[J]. The Plant Journal,2018,94(4):685-698.
[62] Wang Y P,Chen J W,Feng J J,et al. Overexpression of a loquat(Eriobotrya japonica Lindl.)vacuolar invertase affects sucrose levels and growth[J]. Plant Cell,Tissue and Organ Culture(PCTOC),2015,123(1):99-108.
[63] Klann E M,Chetelat R T,Bennett A B. Expression of acid invertase gene controls sugar composition in tomato(Lycopersicon)fruit[J]. Plant Physiology,1993,103(3):863-870.
[64] Klann E M,Hall B,Bennett A B. Antisense acid invertase(TIV1)gene alters soluble sugar composition and size in transgenic tomato fruit[J]. Plant Physiology,1996,112(3):1321-1330.
[65] Qin G Z,Zhu Z,Wang W H,et al. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening[J]. Plant Physiology,2016,172(3):1596-1611.
[66] 安新民,张志毅,陶俊,等. 苹果液泡酸性转化酶基因片段的克隆及序列分析[J]. 细胞生物学,2003,25(6):398-401. An X M,Zhang Z Y,Tao J,et al. Coloning and analysis of the vacuolar acid invertase gene fragment from Malus pumila[J]. Chinese Journal of Cell Biology,2003,25(6):398-401(in Chinese with English abstract).
[67] He X X,Wei Y Y,Kou J Y,et al. PpVIN2,an acid invertase gene family member,is sensitive to chilling temperature and affects sucrose metabolism in postharvest peach fruit[J]. Plant Growth Regulation,2018,86(2):169-180.
[68] Wang X L,Hu Z Y,You C X,et al. Subcellular localization and vacuolar targeting of sorbitol dehydrogenase in apple seed[J]. Plant Science,2013,210:36-45.
[69] Wang X L,Xu Y H,Peng C C,et al. Ubiquitous distribution and different subcellular localization of sorbitol dehydrogenase in fruit and leaf of apple[J]. Journal of Experimental Botany,2009,60(3):1025-1034.
[70] Yamaki S. Localization of sorbitol oxidase in vacuoles and other subcellular organelles in apple cotyledons[J]. Plant and Cell Physiology,1982,23(5):891-899.
[71] Hedrich R,Sauer N,Neuhaus H E. Sugar transport across the plant vacuolar membrane:nature and regulation of carrier proteins[J]. Current Opinion in Plant Biology,2015,25:63-70.

相似文献/References:

[1]赵秀,朱小龙,何亚文,等.酿酒酵母中磷脂合成相关基因突变对细胞自噬和液泡形态的影响[J].南京农业大学学报,2015,38(1):70.[doi:10.7685/j.issn.1000-2030.2015.01.011]
 ZHAO Xiu,ZHU Xiaolong,HE Yawen,et al.CDS1 is required for proper vacuole morphology but not for autophagy in Saccharomyces cerevisiae[J].Journal of Nanjing Agricultural University,2015,38(4):70.[doi:10.7685/j.issn.1000-2030.2015.01.011]

备注/Memo

备注/Memo:
收稿日期:2018-12-13。
基金项目:国家自然科学基金项目(31830081)
作者简介:张绍铃,教授,博导,主要从事梨基因组学、发育生物学和品质代谢调控等研究,E-mail:slzhang@njau.edu.cn。
更新日期/Last Update: 1900-01-01