YOU Jia,GU Han,ZHU Ze,et al.Mapping of QTL for grain weight and grain shape and identification of qGL3.2 for grain length in rice[J].Journal of Nanjing Agricultural University,2019,42(4):612-621.[doi:10.7685/jnau.201812040]





Mapping of QTL for grain weight and grain shape and identification of qGL3.2 for grain length in rice
游佳 谷晗 朱泽 肖世卓 王致远 刘子文 胡曼曼 刘世家 陈亮明 刘喜 田云录 江玲 刘玲珑
南京农业大学作物遗传与种质创新国家重点实验室/江苏省植物基因工程技术研究中心, 江苏 南京 210095
YOU Jia GU Han ZHU Ze XIAO Shizhuo WANG Zhiyuan LIU Ziwen HU Manman LIU Shijia CHEN Liangming LIU Xi TIAN Yunlu JIANG Ling LIU Linglong
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Research Center of Jiangsu Plant Gene Engineering, Nanjing Agricultural University, Nanjing 210095, China
Oryza rufipogon Griff.chromosome segment substitution line(CSSL)QTL1 000-grain weight(TGW)grain length(GL)grain width(GW)length-to-width ratio(LWR)
[目的]通过水稻粒质量和粒形相关基因的QTL分析,挖掘普通野生稻(Oryza rufipogon Griff.)中优异基因,为高产水稻资源的鉴定与品种改良提供研究基础和创新材料。[方法]以籼稻品种‘9311’为受体亲本,普通野生稻为供体亲本构建的染色体片段置换系群体为研究材料,考察2015、2016和2017年水稻种子千粒质量、粒长、粒宽和长宽比等性状,利用QTL IciMapping 4.1软件对控制籽粒大小的QTL进行定位分析。并利用‘9311’与小粒家系Q8衍生的次级F2群体验证第3染色体1个效应明显的QTL(qGL3.2)。[结果]3年共定位到16个QTL,分布于第2、3、6、8和11染色体上,解释遗传变异的4.52%~13.08%。‘9311’与Q8家系衍生的次级F2群体验证了标记Indel3-17和RM3646之间qGL3.2位点的真实性,其对千粒质量、粒宽和长宽比的贡献率分别为33.18%、8.76%和59.92%;对粒长的效应尤为明显,LOD值高达39.29,可解释表型变异的贡献率达61.43%。精细定位和测序分析表明qGL3.2在基因Os03g0407400编码区发生1个C-A的替换,导致蛋白翻译提前终止。对130份种质资源等位变异类型和籽粒长度的分析表明C-A等位变异与粒长高度相关。[结论]qGL3.2位点Os03g0407400基因C-A突变对水稻粒质量和粒形有重要影响,这为该基因的进一步育种利用和分子标记辅助选择提供依据。
[Objectives]The objective of this study was to explore the favorable alleles in Oryza rufipogon Griff. and provide research basis and innovative materials for the identification and variety improvement of high-yielding rice resources through QTL analysis of rice grain weight and grain shape-related genes.[Methods]A set of chromosome segment substitution line(CSSL),derived from an indica rice variety ‘9311’ as the recurrent parent and the Oryza rufipogon Griff. as the donor parent,were used as research materials. Four traits including 1 000-grain weight,grain length,grain width and length-to-width ratio of rice seeds were measured in 2015,2016 and 2017. The QTL IciMapping 4.1 software was employed to detect the QTL controlling the four grain size-related traits. Further,a main QTL (qGL3.2)located on chromosome 3 was verified by using an F2 population derived from the crossing between ‘9311’ and a small-grain CSSL(named Q8).[Results]A total of 16 QTL were detected on chromosomes 2,3,6,8 and 11 in three years,with phenotypic variation explained(PVE)from 4.52% to 13.08%. The qGL3.2 locus between the markers Indel3-17 and RM3646 was confirmed by the F2 population derived from ‘9311’ and Q8,and its PVE to 1 000-grain weight,grain width and length-to-width ratio were 33.18%,8.76% and 59.92%,respectively. Markedly,the LOD score of qGL3.2 to grain length was as high as 39.29,with PVE of 61.43%. Fine mapping and sequencing analysis showed that qGL3.2 locus had a C-A substitution in the coding region of the gene Os03g0407400,resulting in the premature termination of protein translation. Analysis of allelic variation and grain length of 130 germplasm resources showed that C-A variation was highly correlated with grain length.[Conclusions]The C-A mutation in qGL3.2(Os03g0407400)has an important effect on grain weight and grain shape of rice,which provides a basis for further breeding and marker-assisted selection.


[1] Yan S,Zou G H,Li S J,et al. Seed size is determined by the combinations of the genes controlling different seed characteristics in rice[J]. Theoretical and Applied Genetics,2011,123(7):1173-1181.
[2] Song X J,Huang W,Shi M,et al. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics,2007,39(5):623-630.
[3] Huang K,Wang D K,Duan P G,et al. WIDE AND THICK GRAIN1,which encodes an otubain-like protease with deubiquitination activity,influences grain size and shape in rice[J]. Plant Journal,2017,91(5):849-860.
[4] Wang S S,Wu K,Qian Q,et al. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield[J]. Cell Research,2017,27(9):1142-1156.
[5] Huang X Z,Qian Q,Liu Z B,et al. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics,2009,41(4):494-497.
[6] Li Y B,Fan C C,Xing Y Z,et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics,2011,43(12):1266-1269.
[7] Xu C J,Liu Y,Li Y B,et al. Differential expression of GS5 regulates grain size in rice[J]. Journal of Experimental Botany,2015,66(9):2611-2623.
[8] Wang Y X,Xiong G S,Hu J,et al. Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics,2015,47(8):944-948.
[9] Wang S K,Wu K,Yuan Q B,et al. Control of grain size,shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[10] Wang S K,Li S,Liu Q,et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nature Genetics,2015,47(8):949-954.
[11] Duan P G,Rao Y C,Zeng D L,et al. SMALL GRAIN1,which encodes a mitogen-activated protein kinase kinase 4,influences grain size in rice[J]. Plant Journal,2014,77(4):547-557.
[12] Wu W G,Liu X Y,Wang M H,et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication[J]. Nature Plants,2017,3:17064.
[13] Thalapati S,Batchu A K,Neelamraju S,et al. Os11Gsk gene from a wild rice,Oryza rufipogon improves yield in rice[J]. Funct Integr Genomics,2012,12(2):277-289.
[14] 沈子杰,范德佳,何俊,等. 籼稻品种‘IR13427-45-2-1-2-2-2’抗白背飞虱QTL定位[J]. 南京农业大学学报,2017,40(6):957-962. DOI:10.7685/jnau.201704027. Shen Z J,Fan D J,He J,et al. Mapping of the quantitative trait locus conferring white-backed planthopper resistance in indica cultivar ‘IR13427-45-2-1-2-2-2’[J]. Journal of Nanjing Agricultural University,2017,40(6):957-962(in Chinese with English abstract).
[15] McCouch S R. Gene nomenclature system for rice[J]. Rice,2008,1(1):72-84.
[16] Sanguinetti C J,Dias N E,Simpson A J. RAPD silver staining and recovery of PCR products separated on polyacrylamide gels[J]. Biotechniques,1994,17:914-918.
[17] Mao H L,Sun S Y,Yao J L,et al. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proc Natl Acad Sci USA,2010,107(45):19579-19584.
[18] Wang C R,Chen S,Yu S B. Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice[J]. Theoretical and Applied Genetics,2011,122(5):905-913.
[19] Fan C C,Yu S B,Wang C R,et al. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker[J]. Theoretical and Applied Genetics,2009,118(3):465-472.
[20] 周梦玉,宋昕蔚,徐静,等. 籼稻C84和粳稻春江16B重组自交系遗传图谱构建及籽粒性状QTL定位与验证[J]. 中国水稻科学,2018,32(3):207-218. Zhou M Y,Song X W,Xu J,et al. Construction of genetic map and mapping and verification of grain traits QTLs using recombinant inbred lines derived from a cross between indica C84 and japonica CJ16B[J]. Chinese Journal of Rice Science,2018,32(3):207-218(in Chinese with English abstract).
[21] 邢永忠,谈移芳,徐才国,等. 利用水稻重组自交系群体定位谷粒外观性状的数量性状基因[J]. 植物学报,2001,43(8):840-845. Xing Y Z,Tan Y F,Xu C G,et al. Mapping quantitative trait loci for grain appearance traits of rice using a recombinant inbred line population[J]. Acta Botanica Sinica,2001,43(8):840-845(in Chinese with English abstract).
[22] 郭龙彪,罗利军,邢永忠,等. 水稻重要农艺性状的两年QTL剖析[J]. 中国水稻科学,2003,17(3):211-218. Guo L B,Luo L J,Xing Y Z,et al. Dissection of QTLs in two years for important agronomic traits in rice(Oryza sativa L.)[J]. Chinese Journal of Rice Science,2003,17(3):211-218(in Chinese with English abstract).
[23] 张亚东,张颖慧,董少玲,等. 特大粒水稻材料粒型性状的QTL检测[J]. 中国水稻科学,2013,27(2):122-128. Zhang Y D,Zhang Y H,Dong S L,et al. Identification of QTL for rice grain traits based on an extra-large grain material[J]. Chinese Journal of Rice Science,2013,27(2):122-128(in Chinese with English abstract).
[24] 孙滨,占小登,林泽川,等. 水稻粒形和粒质量性状的相关性分析及QTL定位[J]. 分子植物育种,2015,13(12):2663-2672. Sun B,Zhan X D,Lin Z C,et al. Correlation analysis and QTL mapping of grain shape and grain weight in rice[J]. Molecular Plant Breeding,2015,13(12):2663-2672(in Chinese with English abstract).
[25] 李纯,王超龙,陈赛华,等. 水稻RZ54/南京11 F2群体抽穗期QTL分析[J]. 南京农业大学学报,2018,41(5):801-807. DOI:10.7685/jnau.201803003. Li C,Wang C L,Chen S H,et al. QTL analysis of heading date in rice RZ54/Nanjing11 F2 population[J]. Journal of Nanjing Agricultural University,2018,41(5):801-807(in Chinese with English abstract).
[26] 孟帅,徐鹏,张迎信,等. 利用CRISPR/Cas9技术编辑粒长基因GS3改善粳稻花时[J]. 中国水稻科学,2018,32(2):119-127. Meng S,Xu P,Zhang Y X,et al. CRISPR/Cas9-mediated editing of GS3 to improve flowering time in japonica rice[J]. Chinese Journal of Rice Science,2018,32(2):119-127(in Chinese with English abstract).
[27] 黄海祥,钱前. 水稻粒形遗传与长粒型优质粳稻育种进展[J]. 中国水稻科学,2017,31(6):665-672. Huang H X,Qian Q. Progress in genetic research of rice grain shape and breeding achievements of long-grain shape and good quality japonica[J]. Rice Chinese Journal of Rice Science,2017,31(6):665-672(in Chinese with English abstract).
[28] Xiao J H,Li J M,Grandillo S,et al. Identification of trait-improving quantitative trait loci alleles from a wild rice relative,Oryza rufipogon[J]. Genetics,1998,150(2):899-909.
[29] Brondani C,Rangel P H,Brondani R P,et al. QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice(Oryza sativa)using microsatellite markers[J]. Theoretical and Applied Genetics,2002,104(6/7):1192-1203.
[30] Thomson M J,Tai T H,McClung A M,et al. Mapping quantitative trait loci for yield,yield components and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson[J]. Theoretical and Applied Genetics,2003,107(3):479-493.


更新日期/Last Update: 1900-01-01