[1]高志红,侍婷,倪照君,等.梅种质资源与分子生物学研究进展[J].南京农业大学学报,2019,42(6):975-985.[doi:10.7685/jnau.201811022]
 GAO Zhihong,SHI Ting,NI Zhaojun,et al.Research progress on germplasm and molecular biology in Japanese apricot[J].Journal of Nanjing Agricultural University,2019,42(6):975-985.[doi:10.7685/jnau.201811022]
点击复制

梅种质资源与分子生物学研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
975-985
栏目:
综述
出版日期:
2019-11-15

文章信息/Info

Title:
Research progress on germplasm and molecular biology in Japanese apricot
作者:
高志红 侍婷 倪照君 潘振朋 倪晓鹏
南京农业大学园艺学院, 江苏 南京 210095
Author(s):
GAO Zhihong SHI Ting NI Zhaojun PAN Zhenpeng NI Xiaopeng
College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
种质资源分子生物学
Keywords:
Japanese apricotgermplasmmolecular biology
分类号:
S662.4
DOI:
10.7685/jnau.201811022
摘要:
梅起源于我国,具有丰富的种质资源和遗传多样性。国家级种质资源圃的建立提高了梅种质资源的保存与鉴定水平,同时梅基因组测序的完成也促进了近年来梅分子生物学研究。本文重点综述了梅的起源与分布、资源收集与鉴定评价、核基因组与叶绿体基因组研究、雌蕊发育机制、自交不亲和机制、季节性休眠机制、分子标记、组织培养及遗传转化等方面的研究进展,探讨了梅种质资源研究和分子生物学研究中存在的问题,并指出了今后的重点研究方向。
Abstract:
Japanese apricot originated in China with diverse genetic germplasm. The establishment of National Field Germplasm GenBank in China for Japanese apricot has improved the level of preservation and identification. The accomplishment of the sequencing of the genome has made great progress in the study of molecular biology. The origin and distribution,germplasm collection and identification,the sequencing of nuclear genome and chloroplast genome,the mechanism of pistil development,self-incompatibility andseasonal dormancy,molecular marker,tissue culture and genetic tranformation related to Japanese apricot in recent years were summarized in this review. Finally,we discussed the key issues and stressed that the researches on the germplasm resources and molecular biology need to be focused in the future in Japanese apricot.

参考文献/References:

[1] 褚孟嫄. 中国果树志:梅卷[M]. 北京:中国林业出版社,1999. Chu M Y. China Fruit Tree:Mei[M]. Beijing:China Forestry Publishing House,1999(in Chinese).
[2] 舒迎澜. 我国古代梅的分布利用与种植[J]. 中国农史,1986,5(3):60-72. Shu Y L. Distribution and planting of ancient Prunus mume in China[J]. Agricultural History of China,1986,5(3):60-72(in Chinese).
[3] 陈俊愉. 中国梅花研究的几个方面[J]. 北京林业大学学报,1995,17(S1):1-7. Chen J Y. Some aspects on Chinese mei flowers research[J]. Journal of Beijing Forestry University,1995,17(S1):1-7(in Chinese with English abstract).
[4] 张孝岳. 梅与梅文化[M]. 北京:中国农业出版社,2005. Zhang X Y. Mei and Mei Culture[M]. Beijing:China Agriculture Press,2005(in Chinese).
[5] 陈红,谭志刚. 中国果梅种质资源研究与利用[J]. 天津农业科学,2011,17(6):108-110. Chen H,Tan Z G. Research and utilization of Prunus mume germplasm resources in China[J]. Tianjin Agricultural Sciences,2011,17(6):108-110(in Chinese with English abstract).
[6] 朱世阳,应晓亮,王晓东. 浅谈中国梅:梅花的野生资源与栽培分布[J]. 华东森林经理,2012,26(1):52-55,62. Zhu S Y,Ying X L,Wang X D. Discussion on the wild resources and cultivation distribution of Prunus mume in China[J]. East China Forest Management,2012,26(1):52-55,62(in Chinese).
[7] 侍婷,张其林,高志红,等. 2个果梅品种雌蕊分化进程及相关生化指标分析[J]. 植物资源与环境学报,2011,20(4):35-41. Shi T,Zhang Q L,Gao Z H,et al. Analyses on pistil differentiation process and related biochemical indexes of two cultivars of Prunus mume[J]. Journal of Plant Resources and Environment,2011,20(4):35-41(in Chinese with English abstract).
[8] 高志红,章镇,韩振海,等. 中国果梅核心种质的构建与检测[J]. 中国农业科学,2005,38(2):363-368. Gao Z H,Zhang Z,Han Z H,et al. Development and evaluation of core collection of Japanese apricot germplasms in China[J]. Scientia Agricultura Sinica,2005,38(2):363-368(in Chinese with English abstract).
[9] 高志红,章镇,韩振海. 果梅种质枝条抗寒性鉴定[J]. 果树学报,2005,22(6):709-711. Gao Z H,Zhang Z,Han Z H. Identification of freezing resistance in Japanese apricot germplasm[J]. Journal of Fruit Science,2005,22(6):709-711(in Chinese with English abstract).
[10] 侍婷,高志红,章镇,等. 47个果梅品种开花生物学特性和花粉萌发率比较[J]. 中国农学通报,2011,27(4):227-232. Shi T,Gao Z H,Zhang Z,et al. Comparison of biological traits of flowers and the rate of pollen germination among 47Prunus mume cultivars[J]. Chinese Agricultural Science Bulletin,2011,27(4):227-232(in Chinese with English abstract).
[11] 邵静. 果梅抑菌、抗癌活性及其有效成分的研究[D]. 南京:南京农业大学,2013. Shao J. Evaluation of the antibacterial and anticancer effect of Japanese apricot and the active substance[D]. Nanjing:Nanjing Agricultural University,2013(in Chinese with English abstract).
[12] 王培培,侍婷,高志红,等. 中国原产果梅自交亲和变异品种花粉决定基因SFB的插入突变[J]. 园艺学报,2012,39(3):453-460. Wang P P,Shi T,Gao Z H,et al. Insertion mutation of pollen SFB gene in self-compatibility of Japanese apricot cultivars native to China[J]. Acta Horticulturae Sinica,2012,39(3):453-460(in Chinese with English abstract).
[13] Wang P P,Gao Z H,Ni Z J,et al. Self-compatibility in ‘Zaohong’ Japanese apricot is associated with the loss of function of pollen S genes[J]. Molecular Biology Reports,2013,40(11):6485-6493.
[14] Zhuang W B,Cai B H,Gao Z H,et al. Determination of chilling and heat requirements of 69 Japanese apricot cultivars[J]. European Journal of Agronomy,2016,74:68-74.
[15] 王培培,高志红,章镇. 果梅自交不亲和相关基因型(S、SFB/SLF)研究进展[J]. 中国农学通报,2012,28(22):119-123. Wang P P,Gao Z H,Zhang Z. Recent research advances of self-incompatibility genotypes(S and SFB/SLF)in Japanese apricot[J]. Chinese Agricultural Science Bulletin,2012,28(22):119-123(in Chinese with English abstract).
[16] Shen Y Y,Ding X J,Wang F,et al. Analysis of genetic diversity in Japanese apricot(Prunus mume Sieb. et Zucc.)based on REMAP and IRAP molecular markers[J]. Scientia Horticulturae,2011,132:50-58.
[17] Xue S,Shi T,Luo W J,et al. Comparative analysis of the complete chloroplast genome among Prunus mume,P.armeniaca,and P.salicina[J]. Horticulture Research,2019,6:89.
[18] Zhang Q X,Chen W B,Sun L D,et al. The genome of Prunus mume[J]. Nature Communications,2012,3:1318.
[19] Sasaki R,Yamane H,Ooka T,et al. Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot[J]. Plant Physiology,2011,157(1):485-497.
[20] Hao R J,Zhang Q,Yang W R,et al. Emitted and endogenous floral scent compounds of Prunus mume and hybrids[J]. Biochemical Systematics and Ecology,2014,54:23-30.
[21] Zhang Q X,Zhang H,Sun L D,et al. The genetic architecture of floral traits in the woody plant Prunus mume[J]. Nature Communications,2018,9:1702.
[22] Yang J B,Yang S X,Li H T,et al. Comparative chloroplast genomes of Camellia species[J]. PLoS One,2013,8(8):e73053.
[23] Dyall S D. Ancient invasions:from endosymbionts to organelles[J]. Science,2004,304(5668):253-257.
[24] Umesono K,Inokuchi H,Ohyama K,et al. Nucleotide sequence of Marchantia polymorphachloroplast DNA:a region possibly encoding three tRNAs and three proteins including a homologue of E.coli ribosomal protein S14[J]. Nucleic Acids Research,1984,12(24):9551-9565.
[25] Wang S,Gao C W,Gao L Z. Plastid genome sequence of an ornamental and editable fruit tree of Rosaceae,Prunus mume[J]. Mitochondrial DNA Part A,2016,27(6):4407-4408.
[26] 李晓颖,余金保,王保根,等. 南京梅花品种资源若干花性状的数量分布及评价[J]. 北京林业大学学报,2012,34(S1):45-49. Li X Y,Yu J B,Wang B G,et al. Quantitative distribution and evaluation of some flower characteristics of Prunus mume cultivars[J]. Journal of Beijing Forestry University,2012,34(S1):45-49(in Chinese with English abstract).
[27] Gao Z H,Shi T,Luo X Y,et al. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with pistil development in Japanese apricot[J]. BMC Genomics,2012,13(1):371.
[28] Wang W X,Shi T,Ni X P,et al. The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume[J]. Genome,2018,61(1):43-48.
[29] Shi T,Zhuang W B,Zhang Z,et al. Comparative proteomic analysis of pistil abortion in Japanese apricot(Prunus mume Sieb. et Zucc)[J]. Journal of Plant Physiology,2012,169(13):1301-1310.
[30] Sun H L,Shi T,Song J,et al. Pistil abortion in Japanese apricot(Prunus mume Sieb. et Zucc.):isolation and functional analysis of PmCCoAOMT gene[J]. Acta Physiologiae Plantarum,2016,38(5):114.
[31] Song J,Gao Z H,Huo X M,et al. Genome-wide identification of the auxin response factor(ARF)gene family and expression analysis of its role associated with pistil development in Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Acta Physiologiae Plantarum,2015,37(8):1-13.
[32] Hou J H,Gao Z H,Zhang Z,et al. Isolation and characterization of an AGAMOUS homologue PmAG from the Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Plant Molecular Biology Reporter,2011,29(2):473-480.
[33] Zhou Y Z,Xu Z D,Yong X,et al. SEP-class genes in Prunus mume and their likely role in floral organ development[J]. BMC Plant Biology,2017,17:10.
[34] 侍婷. 基于组学的果梅雌蕊败育分子机理[D]. 南京:南京农业大学,2014. Shi T. The molecular mechanism of pistil abortion based on omics in Japanese apricot[D]. Nanjing:Nanjing Agricultural University,2014(in Chinese with English abstract).
[35] Tao R,Habu T,Yamane H,et al. Molecular markers for self-compatibility in Japanese apricot(Prunus mume)[J]. HortScience,2000,35(6):1121-1123.
[36] Yaegaki H,Shimada T,Moriguchi T,et al. Molecular characterization of S-RNase genes and S-genotypes in the Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Sexual Plant Reproduction,2001,13(5):251-257.
[37] Matsumoto D,Tao R. Recognition of a wide-range of S-RNases by S locus F-box like 2,a general-inhibitor candidate in the Prunus-specific S-RNase-based self-incompatibility system[J]. Plant Molecular Biology,2016,91(4/5):459-469.
[38] East E M,Mangelsdorf A J. A new interpretation of the hereditary behavior of self-sterile plants[J]. Proc Natl Acad Sci USA,1925,11(2):166-171.
[39] Tao R,Habu T,Yamane H,et al. Characterization and cDNA cloning for Sf-RNase,a molecular marker for self-compatibility,in Japanese apricot(Prunus mume)[J]. Engei Gakkai Zasshi,2002,71(5):595-600.
[40] Habu T,Matsumoto D,Fukuta K,et al. Cloning and characterization of twelve S-RNase alleles in Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Journal of the Japanese Society for Horticultural Science,2008,77(4):374-381.
[41] Entani T,Iwano M,Shiba H,et al. Comparative analysis of the self-incompatibility(S-)locus region of Prunus mume:identification of a pollen-expressed F-box gene with allelic diversity[J]. Genes to Cells,2003,8(3):203-213.
[42] Heng W,Wu H Q,Chen Q X,et al. Identification of S-genotypes and novel S-RNase alleles in Prunus mume[J]. The Journal of Horticultural Science and Biotechnology,2008,83(6):689-694.
[43] Xu J X,Gao Z H,Zhang Z. Identification of S-genotypes and novel S-RNase alleles in Japanese apricot cultivars native to China[J]. Scientia Horticulturae,2010,123(4):459-463.
[44] Wang P P,Shi T,Zhuang W B,et al. Determination of S-RNase genotypes and isolation of four novel S-RNase genes in Japanese apricot(Prunus mume Sieb. et Zucc.)native to China[J]. The Journal of Horticultural Science and Biotechnology,2012,87(3):266-270.
[45] Gao Z H,Wang P P,Zhuang W B,et al. Sequence analysis of new S-RNase and SFB alleles in Japanese apricot(Prunus mume)[J]. Plant Molecular Biology Reporter,2013,31(3):751-762.
[46] Wang P P,Gao Z H,Ni Z J,et al. Isolation and identification of new pollen-specific SFB genes in Japanese apricot(Prunus mume)[J]. Genetics and Molecular Research:GMR,2013,12(3):3286-3295.
[47] Ushijima K,Yamane H,Watari A,et al. The S haplotype-specific F-box protein gene,SFB,is defective in self-compatible haplotypes of Prunus avium and P.mume[J]. The Plant Journal,2004,39(4):573-586.
[48] Yamane H,Fukuta K,Matsumoto D,et al. Characterization of a novel self-compatible S3’ haplotype leads to the development of a universal PCR marker for two distinctly originated self-compatible S haplotypes in Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Journal of the Japanese Society for Horticultural Science,2009,78(1):40-48.
[49] Heng W,Wu J,Wu H Q,et al. Identification and characterisation of SFBs in Prunus mume[J]. Plant Molecular Biology Reporter,2012,30(4):878-884.
[50] Lang G. Endo-,para-,and eco-dormancy:physiological terminology and classification for dormancy research[J]. HortScience,1987,22:371-377.
[51] Zhang Z Y,Zhuo X K,Zhao K,et al. Transcriptome profiles reveal the crucial roles of hormone and sugar in the bud dormancy of Prunus mume[J]. Scientific Reports,2018,8:5090.
[52] da Silveira Falavigna V,Miotto Y E,Porto D D,et al. Functional diversification of the dehydrin gene family in apple and its contribution to cold acclimation during dormancy[J]. Physiologia Plantarum,2015,155(3):315-329.
[53] Koornneef M,Léon-Kloosterziel K M,Schwartz S H,et al. The genetic and molecular dissection of abscisic acid biosynthesis and signal transduction in Arabidopsis[J]. Plant Physiology and Biochemistry,1998,36(1/2):83-89.
[54] Zheng C L,Halaly T,Acheampong A K,et al. Abscisic acid(ABA)regulates grape bud dormancy,and dormancy release stimuli may act through modification of ABA metabolism[J]. Journal of Experimental Botany,2015,66(5):1527-1542.
[55] Zhuang W B,Gao Z H,Wang L J,et al. Comparative proteomic and transcriptomic approaches to address the active role of GA4 in Japanese apricot flower bud dormancy release[J]. Journal of Experimental Botany,2013,64(16):4953-4966.
[56] Wen L H,Zhong W J,Huo X M,et al. Expression analysis of ABA-and GA-related genes during four stages of bud dormancy in Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. The Journal of Horticultural Science and Biotechnology,2016,91(4):362-369.
[57] Griffiths J,Murase K,Rieu I,et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis[J]. The Plant Cell,2006,18(12):3399-3414.
[58] Dill A,Thomas S G,Hu J H,et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation[J]. The Plant Cell,2004,16(6):1392-1405.
[59] Lv L,Huo X M,Wen L H,et al. Isolation and role of PmRGL2 in GA-mediated floral bud dormancy release in Japanese apricot(Prunus mume Sieb. et Zucc.)[J]. Frontiers in Plant Science,2018,9:27.
[60] Zhao K,Zhou Y Z,Ahmad S,et al. Comprehensive cloning of Prunus mume dormancy associated MADS-box genes and their response in flower bud development and dormancy[J]. Frontiers in Plant Science,2018,9:17.
[61] Zhao K,Zhou Y Z,Ahmad S,et al. PmCBFs synthetically affect PmDAM6 by alternative promoter binding and protein complexes towards the dormancy of bud for Prunus mume[J]. Scientific Reports,2018,8:4527.
[62] Zhao K,Zhou Y Z,Li Y S,et al. Crosstalk of PmCBFs and PmDAMs based on the changes of phytohormones under seasonal cold stress in the stem of Prunus mume[J]. International Journal of Molecular Sciences,2018,19(2):15.
[63] Kitamura Y,Habu T,Yamane H,et al. Identification of QTLs controlling chilling and heat requirements for dormancy release and bud break in Japanese apricot(Prunus mume)[J]. Tree Genetics & Genomes,2018,14(2):33.
[64] Yamane I H,Wada M,Honda C,et al. Overexpression of Prunus DAM6 inhibits growth,represses bud break competency of dormant buds and delays bud outgrowth in apple plants[J]. PLoS One,2019,14(4):e0214788.
[65] 张学宁,郭保林,张开春. 果树分子标记研究进展[J]. 河北农业大学学报,2003,26(S1):75-78. Zhang X N,Guo B L,Zhang K C. Research advances on molecular markers in fruit trees[J]. Journal of Hebei Agricultural University,2003,26(S1):75-78(in Chinese with English abstract).
[66] Yamane H,Ushijima K,Sassa H,et al. The use of the S haplotype-specific F-box protein gene,SFB,as a molecular marker for S-haplotypes and self-compatibility in Japanese apricot(Prunus mume)[J]. Theoretical and Applied Genetics,2003,107(8):1357-1361.
[67] Li X Y,Wang C,Yang G,et al. Employment of a new strategy for identification of Prunus mume cultivars using random amplified polymorphic deoxyribonucleic acid(RAPD)markers[J]. African Journal of Plant Science,2011,5(9):500-509.
[68] Fang J G,Qiao Y S,Zhang Z,et al. Genotyping fruiting mei(Prunus mume Sieb. et Zucc.)cultivars using amplified fragment-length polymorphism markers[J]. HortScience,2005,40(2):325-328.
[69] 高志红. 果梅核心种质的构建与分子标记的研究[D]. 北京:中国农业大学,2003. Gao Z H. Core collection and molecular marker of Japanese apricot(Prunus mume Sieb. et Zucc.)[D]. Beijing:China Agricultural University,2003(in Chinese with English abstract).
[70] Li X Y,Wang B,Wang C,et al. Genetic relationships between fruiting and flowering mei(Prunus mume)cultivars using SNP markers[J]. The Journal of Horticultural Science and Biotechnology,2010,85(4):329-334.
[71] Du D L,Zhang Q X,Cheng T R,et al. Genome-wide identification and analysis of late embryogenesis abundant(LEA)genes in Prunus mume[J]. Molecular Biology Reports,2013,40(2):1937-1946.
[72] Sun L D,Wang Y Q,Yan X L,et al. Genetic control of juvenile growth and botanical architecture in an ornamental woody plant,Prunus mume Sieb. et Zucc. as revealed by a high-density linkage map[J]. BMC Genetics,2014,15(Suppl 1):S1.
[73] Zhang J,Zhang Q X,Cheng T R,et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant(Prunus mume Sieb. et Zucc.)[J]. DNA Research,2015,22(3):183-191.
[74] 朱丹红,杨炜茹,李媛,等. 真梅系梅花‘三轮玉蝶’叶片再生体系的初步建立[J]. 西北农林科技大学学报(自然科学版),2013,41(7):209-216. Zhu D H,Yang W R,Li Y,et al. Preliminary establishment of the regeneration systems for Prunus mume ‘Sanlun Yudie’ leaf-explants[J]. Journal of Northwest A & F University(Natural Science Edition),2013,41(7):209-216(in Chinese with English abstract).
[75] 宁国贵,吕海燕,张俊卫,等. 梅花不同外植体离体培养及体细胞胚诱导植株再生[J]. 园艺学报,2010,37(1):114-120. Ning G G,Lü H Y,Zhang J W,et al. In vitro culture of different explants and plant regeneration via embryogenesis from immature cotyledons of Prunus mume[J]. Acta Horticulturae Sinica,2010,37(1):114-120(in Chinese with English abstract).
[76] 胡淑英,张春红,王小敏,等. 滨梅组培苗玻璃化成因及其克服技术研究[J]. 中国南方果树,2013,42(5):37-41. Hu S Y,Zhang C H,Wang X M,et al. Study on the causes and prevention methods of vitrification in tissue culture of beach plum(Prunus maritima Marshall)[J]. South China Fruits,2013,42(5):37-41(in Chinese with English abstract).
[77] 燕志,张焕仕,王猛,等. 滨梅茎段组培污染率控制方法的研究[J]. 中国南方果树,2013,42(6):9-13. Yan Z,Zhang H S,Wang M,et al. Studies on the methods for control of contamination in tissue culture of Prunus maritima stems[J]. South China Fruits,2013,42(6):9-13(in Chinese with English abstract).
[78] 杨丽青,杨洁,毛庆山,等. ‘小绿萼’梅离体快繁体系的建立[J]. 江苏农业科学,2015,43(4):62-64. Yang L Q,Yang J,Mao Q S,et al. Establishment of rapid propagation system in vitro of Prunus mume ‘Xiaolüe’[J]. Jiangsu Agricultural Sciences,2015,43(4):62-64(in Chinese).
[79] 杨洁,闻娟,晏晓兰,等. ‘雪梅’未成熟合子胚体胚发生与植株再生[J]. 北京林业大学学报,2013,35(S1):21-24. Yang J,Wen J,Yan X L,et al. Somatic embryogenesis and plant regeneration from immature zygotic embryos of Prunus mume ‘Xuemei’[J]. Journal of Beijing Forestry University,2013,35(S1):21-24(in Chinese with English abstract).
[80] Ning G G,Bai S P,Bao M Z,et al. Factors affecting plantlet regeneration from in vitro cultured immature embryos and cotyledons of Prunus mume ‘Xuemei’[J]. In Vitro Cellular & Developmental Biology-Plant,2007,43(3):225-230.
[81] Gao M,Kawabe M,Tsukamoto T,et al. Somatic embryogenesis and Agrobacterium-mediated transformation of Japanese apricot(Prunus mume)using immature cotyledons[J]. Scientia Horticulturae,2010,124(3):360-367.
[82] Go M R,Kim H J,Yu J,et al. Toxicity and toxicokinetics of amygdalin in maesil(Prunus mume)syrup:protective effect of maesil against amygdalin toxicity[J]. Journal of Agricultural and Food Chemistry,2018,66(43):11432-11440.
[83] Jang A J,Lee J H,Yotsu-Yamashita M,et al. A novel compound,FA-1 isolated from Prunus mume,protects human bronchial epithelial cells and keratinocytes from cigarette smoke extract-induced damage[J]. Science Reports,2018,8:11504.

相似文献/References:

[1]胡金良,徐汉卿,王庆亚,等.梅花药花粉的发育及组织化学研究[J].南京农业大学学报,1994,17(4):7.[doi:10.7685/j.issn.1000-2030.1994.04.002]
[2]谢福祥,黄亨履.西藏察隅县小麦种质的种类及分布[J].南京农业大学学报,1987,10(3):8.[doi:10.7685/j.issn.1000-2030.1987.03.002]
 Sie Fuxiang,Huang Henglu.WHEAT GERMPLASM RESOURCES AND THEIR DISTRIBUTION IN CHAYU COUNTY, XIZANG (TIBET) AUTONOMOUS REGION[J].Journal of Nanjing Agricultural University,1987,10(6):8.[doi:10.7685/j.issn.1000-2030.1987.03.002]
[3]李晓颖,王玉柱,上官凌飞,等.梅、杏、桃EST同源序列特征分析及EST-SNP发掘[J].南京农业大学学报,2012,35(4):47.[doi:10.7685/j.issn.1000-2030.2012.04.009]
 LI Xiao-ying,WANG Yu-zhu,SHANGGUAN Ling-fei,et al.Characterization and mining of EST-SNP from homologous EST sequences of Prunus mume,P.armeniaca and P.persica[J].Journal of Nanjing Agricultural University,2012,35(6):47.[doi:10.7685/j.issn.1000-2030.2012.04.009]
[4]侯喜林,宋小明.不结球白菜种质资源的研究与利用[J].南京农业大学学报,2012,35(5):35.[doi:10.7685/j.issn.1000-2030.2012.05.005]
 HOU Xi-lin,SONG Xiao-ming.Research and utilization of Brassica campestris ssp.chinensis Makino(non-heading Chinese cabbage)germplasm resources[J].Journal of Nanjing Agricultural University,2012,35(6):35.[doi:10.7685/j.issn.1000-2030.2012.05.005]
[5]翁金洋,薛松,倪照君,等.梅和杏果实有机酸代谢差异研究[J].南京农业大学学报,2018,41(6):1009.[doi:10.7685/jnau.201804015]
 WENG Jinyang,XUE Song,NI Zhaojun,et al.The differences of organic acid metabolism in fruits of Prunus mume and Prunus armeniaca[J].Journal of Nanjing Agricultural University,2018,41(6):1009.[doi:10.7685/jnau.201804015]

备注/Memo

备注/Memo:
收稿日期:2018-11-15。
基金项目:国家自然科学基金项目(31772282,31500571);江苏省"六大人才高峰"高层次人才计划项目(NY068)
作者简介:高志红,教授,博导,研究方向为果树种质资源与分子生物学,E-mail:gaozhihong@njau.edu.cn。
更新日期/Last Update: 1900-01-01