[1]王暄,秦鑫,李红梅,等.植物寄生线虫效应子研究进展[J].南京农业大学学报,2019,42(6):986-995.[doi:10.7685/jnau.201906048]
 WANG Xuan,QIN Xin,LI Hongmei,et al.Advances in research of effectors secreted by plant-parasitic nematodes[J].Journal of Nanjing Agricultural University,2019,42(6):986-995.[doi:10.7685/jnau.201906048]
点击复制

植物寄生线虫效应子研究进展()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
986-995
栏目:
综述
出版日期:
2019-11-15

文章信息/Info

Title:
Advances in research of effectors secreted by plant-parasitic nematodes
作者:
王暄 秦鑫 李红梅 于家荣
南京农业大学植物保护学院/农作物生物灾害综合治理教育部重点实验室, 江苏 南京 210095
Author(s):
WANG Xuan QIN Xin LI Hongmei YU Jiarong
College of Plant Protection/Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing 210095, China
关键词:
植物寄生线虫效应子细胞壁降解酶植物免疫取食位点
Keywords:
plant-parasitic nematodes(PPN)effectorcell wall degrading enzymesplant immunityfeeding sites
分类号:
S432.4+5
DOI:
10.7685/jnau.201906048
摘要:
植物寄生线虫是一类专性活体寄生物,每年给全世界农业生产造成极大的损失,其中根结线虫和孢囊线虫分布广、为害重,是最具经济重要性的2大类群。植物寄生线虫诱导植物细胞转化为特异性的取食位点,从中摄取营养以维持线虫的发育和繁殖,效应子被认为在线虫建立和维持寄生过程中发挥着重要的作用。本文从分泌器官、降解和修饰细胞壁、建立取食位点、抑制植物防卫反应以及激活植物免疫系统等方面介绍了植物寄生线虫效应子的相关研究进展,同时讨论了当前研究中存在的问题并对未来的研究方向进行了展望。
Abstract:
Plant-parasitic nematodes(PPN)are obligate parasites,and cause severe crop losses annually throughout the world. The root-knot nematodes(Meloidogyne spp.)and cyst nematodes(Heterodera spp. and Globodera spp.)are among the most economically important groups with wide distribution and serious damage. PPN induce the transformation of plant cells into highly specialized feeding sites from which they absorb nutrients to maintain their development and reproduction. The effectors secreted by PPN are thought to play important roles in the process of initializing infection and sustaining parasitism. In this review,we summarized the progress in research of PPN effectors involving in secretion organs,degradation and modification of plant cell walls,establishment of feeding sites,inhibition of plant defense responses,and activation of plant immune systems. Meanwhile,the challenging in the current research of PPN effectors and the future research interests were also discussed.

参考文献/References:

[1] Abad P,Gouzy J,Aury J M,et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita[J]. Nature Biotechnology,2008,26(8):909-915.
[2] Jones J T,Haegeman A,Danchin E G J,et al. Top 10 plant-parasitic nematodes in molecular plant pathology[J]. Molecular Plant Pathology,2013,14(9):946-961.
[3] Kyndt T,Vieira P,Gheysen G,et al. Nematode feeding sites:unique organs in plant roots[J]. Planta,2013,238(5):807-818.
[4] Hogenhout S A,van der Hoorn R A L,Terauchi R,et al. Emerging concepts in effector biology of plant-associated organisms[J]. Molecular Plant-Microbe Interactions,2009,22(2):115-122.
[5] Smant G,Stokkermans J P W G,Yan Y T,et al. Endogenous cellulases in animals:isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes[J]. Proc Natl Acad Sci USA,1998,95(9):4906-4911.
[6] Haegeman A,Vanholme B,Gheysen G. Characterization of a putative endoxylanase in the migratory plant-parasitic nematode Radopholus similis[J]. Molecular Plant Pathology,2009,10(3):389-401.
[7] Popeijus H,Overmars H,Jones J,et al. Degradation of plant cell walls by a nematode[J]. Nature,2000,406(6791):36-37.
[8] Qin L,Kudla U,Roze E H,et al. Plant degradation:a nematode expansin acting on plants[J]. Nature,2004,427(6969):30.
[9] Lee C,Chronis D,Kenning C,et al. The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development[J]. Plant Physiology,2011,155(2):866-880.
[10] Hewezi T,Juvale P S,Piya S,et al. The cyst nematode effector protein 10A07 targets and recruits host posttranslational machinery to mediate its nuclear trafficking and to promote parasitism in Arabidopsis[J]. The Plant Cell,2015,27:891-907.
[11] Verma A,Lee C,Morriss S,et al. The novel cyst nematode effector protein 30D08 targets host nuclear functions to alter gene expression in feeding sites[J]. New Phytologist,2018,219(2):697-713.
[12] Siddique S,Radakovic Z S,de la Torre C M,et al. A parasitic nematode releases cytokinin that controls cell division and orchestrates feeding site formation in host plants[J]. Proc Natl Acad Sci USA,2015,112(41):12669-12674.
[13] Habash S S,Radakovic Z S,Vankova R,et al. Heterodera schachtii tyrosinase-like protein:a novel nematode effector modulating plant hormone homeostasis[J]. Scientific Reports,2017,7(1):6874.
[14] Lilley C J,Maqbool A,Wu D Q,et al. Effector gene birth in plant parasitic nematodes:neofunctionalization of a housekeeping glutathione synthetase gene[J]. PLoS Genetics,2018,14(4):e1007310.
[15] Leelarasamee N,Zhang L,Gleason C.The root-knot nematode effector MiPFN3 disrupts plant actin filaments and promotes parasitism[J]. PLoS Pathogens,2018,14(3):e1006947.
[16] Xue B Y,Hamamouch N,Li C Y,et al. The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots[J]. Phytopathology,2013,103(2):175-181.
[17] Wang X H,Mitchum M G,Gao B L,et al. A parasitism gene from a plant-parasitic nematode with function similar to CLAVATA3/ESR(CLE)of Arabidopsis thaliana[J]. Molecular Plant Pathology,2005,6(2):187-191.
[18] Kim J,Yang R H,Chang C R,et al. The root-knot nematode Meloidogyne incognita produces a functional mimic of the Arabidopsis INFLORESCENCE DEFICIENT IN ABSCISSION signaling peptide[J]. Journal of Experimental Botany,2018,69(12):3009-3021.
[19] Jaouannet M,Magliano M,Arguel M J,et al. The root-knot nematode calreticulin Mi-CRT is a key effector in plant defense suppression[J]. Molecular Plant-Microbe Interactions,2013,26(1):97-105.
[20] Gleason C,Polzin F,Habash S S,et al. Identification of two Meloidogyne hapla genes and an investigation of their roles in the plant-nematode interaction[J]. Molecular Plant-Microbe Interactions,2017,30(2):101-112.
[21] Zhuo K,Naalden D,Nowak S,et al. A Meloidogyne graminicola C-type lectin,Mg01965,is secreted into the host apoplast to suppress plant defence and promote parasitism[J]. Molecular Plant Pathology,2019,20(3):346-355.
[22] Nguyen C N,Perfus-Barbeoch L,Quentin M,et al. A root-knot nematode small glycine and cysteine-rich secreted effector,MiSGCR1,is involved in plant parasitism[J]. New Phytologist,2018,217:687-699.
[23] Lin B R,Zhuo K,Chen S Y,et al. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system[J]. New Phytologist,2016,209:1159-1173.
[24] Chen J S,Lin B R,Huang Q L,et al. A novel Meloidogyne graminicola effector,MgGPP,is secreted into host cells and undergoes glycosylation in concert with proteolysis to suppress plant defenses and promote parasitism[J]. PLoS Pathogens,2017,13(4):e1006301.
[25] Kud J,Wang W J,Gross R,et al. The potato cyst nematode effector RHA1B is a ubiquitin ligase and uses two distinct mechanisms to suppress plant immune signaling[J]. PLoS Pathogens,2019,15(4):e1007720.
[26] Barnes S N,Wram C L,Mitchum M G,et al. The plant-parasitic cyst nematode effector GLAND4 is a DNA-binding protein[J]. Molecular Plant Pathology,2018,19(10):2263-2276.
[27] Doyle E A,Lambert K N. Meloidogyne javanica chorismate mutase 1 alters plant cell development[J]. Molecular Plant-Microbe Interactions,2003,16(2):123-131.
[28] Iberkleid I,Vieira P,de Almeida Engler J,et al. Fatty acid- and retinol-binding protein Mj-FAR-1 induces tomato host susceptibility to root-knot nematodes[J]. PLoS One,2013,8(5):e64586.
[29] Hewezi T,Howe P J,Maier T R,et al. Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii[J]. Plant Physiology,2010,152(2):968-984.
[30] Naalden D,Haegeman A,de Almeida-Engler J,et al. The Meloidogyne graminicola effector Mg16820 is secreted in the apoplast and cytoplasm to suppress plant host defense responses[J]. Molecular Plant Pathology,2018,19(11):2416-2430.
[31] Semblat J P,Rosso M N,Hussey R S,et al. Molecular cloning of a cDNA encoding an amphid-secreted putative avirulence protein from the root-knot nematode Meloidogyne incognita[J]. Molecular Plant-Microbe Interactions,2001,14(1):72-79.
[32] Gleason C A,Liu Q L,Williamson V M. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence[J]. Molecular Plant-Microbe Interactions,2008,21(5):576-585.
[33] Sacco M A,Koropacka K,Grenier E,et al. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and RanGAP2-dependent plant cell death[J]. PLoS Pathogens,2009,5(8):e1000564.
[34] Lozano-Torres J L,Wilbers R H P,Gawronski P,et al. Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode[J]. Proc Natl Acad Sci USA,2012,109(25):10119-10124.
[35] Haegeman A,Mantelin S,Jones J T,et al. Functional roles of effectors of plant-parasitic nematodes[J]. Gene,2012,492(1):19-31.
[36] Hussey R S,Mims C W. Ultrastructure of esophageal glands and their secretory granules in the root-knot nematode Meloidogyne incognita[J]. Protoplasma,1990,156(1/2):9-18.
[37] Thorpe P,Mantelin S,Cock P J,et al. Genomic characterisation of the effector complement of the potato cyst nematode Globodera pallida[J]. BMC Genomics,2014,15:923.
[38] Robertson L,Robertson W M,Sobczak M,et al. Cloning,expression and functional characterisation of a peroxiredoxin from the potato cyst nematode Globodera rostochiensis[J]. Molecular and Biochemical Parasitology,2000,111(1):41-49.
[39] Jones J T,Reavy B,Smant G,et al. Glutathione peroxidases of the potato cyst nematode Globodera rostochiensis[J]. Gene,2004,324:47-54.
[40] Le X H,Wang X,Guan T L,et al. Isolation and characterization of a fatty acid- and retinoid-binding protein from the cereal cyst nematode Heterodera avenae[J]. Experimental Parasitology,2016,167:94-102.
[41] van den Akker S E,Lilley C J,Jones J T,et al. Identification and characterisation of a hyper variable apoplastic effector gene family of the potato cyst nematodes[J]. PLoS Pathogens,2014,10(9):e1004391.
[42] Gilbert H J. The biochemistry and structural biology of plant cell wall deconstruction[J]. Plant Physiology,2010,153(2):444-455.
[43] Ali M A,Azeem F,Li H J,et al. Smart parasitic nematodes use multifaceted strategies to parasitize plants[J]. Frontiers in Plant Science,2017,8:1699.
[44] Danchin E G J,Rosso M N,Vieira P,et al. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes[J]. Proc Natl Acad Sci USA,2010,107(41):17651-17656.
[45] Whiteman N K,Gloss A D. Parasitology:nematode debt to bacteria[J]. Nature,2010,468(7324):641-642.
[46] Palomares-Rius J E,Hirooka Y,Tsai I J,et al. Distribution and evolution of glycoside hydrolase family 45 cellulases in nematodes and fungi[J]. BMC Evolutionary Biology,2014,14(1):69.
[47] Habash S S,Sobczak M,Siddique S,et al. Identification and characterization of a putative protein disulfide isomerase(HsPDI)as an alleged effector of Heterodera schachtii[J]. Scientific Reports,2017,7:13536.
[48] Cock J M,McCormick S. A large family of genes that share homology with CLAVATA3[J]. Plant Physiology,2001,126(3):939-942.
[49] Replogle A,Wang J Y,Paolillo V,et al. Synergistic interaction of CLAVATA1,CLAVATA2,and RECEPTOR-LIKE PROTEIN KINASE 2 in cyst nematode parasitism of Arabidopsis[J]. Molecular Plant-Microbe Interactions,2013,26(1):87-96.
[50] Guo X L,Chronis D,de la Torre Cuba C M,et al. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors[J]. Plant Biotechnology Journal,2015,13:801-810.
[51] Guo X L,Wang J Y,Gardner M,et al. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation[J]. PLoS Pathogens,2017,13:e10006142.
[52] Cho S K,Larue C T,Chevalier D,et al. Regulation of floral organ abscission in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA,2008,105(40):15629-15634.
[53] Meng X Z,Zhou J G,Tang J,et al. Ligand-induced receptor-like kinase complex regulates floral organ abscission in Arabidopsis[J]. Cell Reports,2016,14:1330-1338.
[54] Jones J D G,Dangl J L. The plant immune system[J]. Nature,2006,444(7117):323-329.
[55] Smant G,Jones J. Suppression of plant defences by nematodes[M]//Jones J,Gheysen G,Fenoll C. Genomics and Molecular Genetics of Plant-Nematode Interactions. Heidelberg:Springer,2011:273-286.
[56] Weaver L M,Herrmann K M. Dynamics of the shikimate pathway in plants[J]. Trends in Plant Science,1997,2(9):346-351.
[57] Lambert K N,Allen K D,Sussex I M.Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica[J]. Molecular Plant-Microbe Interactions,1999,12(4):328-336.
[58] Wang X,Xue B W,Dai J T,et al. A novel Meloidogyne incognita chorismate mutase effector suppresses plant immunity by manipulating the salicylic acid pathway and functions mainly during the early stages of nematode parasitism[J]. Plant Pathology,2018,67:1436-1448.
[59] Garofalo A,Rowlinson M C,Amambua N A,et al. The FAR protein family of the nematode Caenorhabditis elegans. Differential lipid binding properties,structural characteristics,and developmental regulation[J]. Journal of Biological Chemistry,2003,278(10):8065-8074.
[60] Iberkleid I,Sela N,Miyara S B. Meloidogyne javanica fatty acid- and retinol-binding protein(Mj-FAR-1)regulates expression of lipid-,cell wall-,stress- and phenylpropanoid-related genes during nematode infection of tomato[J]. BMC Genomics,2015,16:272.
[61] Rehman S,Postma W,Tytgat T,et al. A secreted SPRY domain-containing protein(SPRYSEC)from the plant-parasitic nematode Globodera rostochiensis interacts with a CC-NB-LRR protein from a susceptible tomato[J]. Molecular Plant-Microbe Interactions,2009,22(3):330-340.
[62] Postma W J,Slootweg E J,Rehman S,et al. The effector SPRYSEC-19 of Globodera rostochiensis suppresses CC-NB-LRR-mediated disease resistance in plants[J]. Plant Physiology,2012,160:944-954.
[63] Wang X,Li H M,Hu Y J,et al. Molecular cloning and analysis of a new venom allergen-like protein gene from the root-knot nematode Meloidogyne incognita[J]. Experimental Parasitology,2007,117(2):133-140.
[64] Lin S F,Jian H,Zhao H J,et al. Cloning and characterization of a venom allergen-like protein gene cluster from the pinewood nematode Bursaphelenchus xylophilus[J]. Experimental Parasitology,2011,127(2):440-447.
[65] Luo S J,Liu S M,Kong L G,et al. Two venom allergen-like proteins,HaVAP1 and HaVAP2,are involved in the parasitism of Heterodera avenae[J]. Molecular Plant Pathology,2019,20(4):471-484.
[66] Lozano-Torres J L,Wilbers R H P,Warmerdam S,et al. Apoplastic venom allergen-like proteins of cyst nematodes modulate the activation of basal plant innate immunity by cell surface receptors[J]. PLoS Pathogens,2014,10(12):e1004569.
[67] Ali S,Magne M,Chen S Y,et al. Analysis of putative apoplastic effectors from the nematode,Globodera rostochiensis,and identification of an expansin-like protein that can induce and suppress host defenses[J]. PLoS One,2015,10(1):e0115042.
[68] Liu J,Peng H,Cui J K,et al. Molecular characterization of a novel effector expansin-like protein from Heterodera avenae that induces cell death in Nicotiana benthamiana[J]. Scientific Reports,2016,6:35677.
[69] Chen C L,Chen Y P,Jian H,et al. Large-scale identification and characterization of Heterodera avenae putative effectors suppressing or inducing cell death in Nicotiana benthamiana[J]. Frontiers in Plant Science,2018,8:2062.
[70] Lee M C S,Miller E A,Goldberg J,et al. Bi-directional protein transport between the ER and Golgi[J]. Annual Review of Cell and Developmental Biology,2004,20(1):87-123.
[71] Stinchcombe J,Bossi G,Griffiths G M. Linking albinism and immunity:the secrets of secretory lysosomes[J]. Science,2004,305(5680):55-59.
[72] Nickel W. Unconventional secretory routes:direct protein export across the plasma membrane of mammalian cells[J]. Traffic,2005,6(8):607-614.
[73] Tournaviti S,Hannemann S,Terjung S,et al. SH4-domain-induced plasma membrane dynamization promotes bleb-associated cell motility[J]. Journal of Cell Science,2007,120(21):3820-3829.
[74] Zhuo K,Chen J S,Lin B R,et al. A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants[J]. Molecular Plant Pathology,2017,18(1):45-54.
[75] Weiberg A,Wang M,Lin F M,et al. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science,2013,342(6154):118-123.
[76] Jin Y,Zhao J H,Zhao P,et al. A fungal milRNA mediates epigenetic repression of a virulence gene in Verticillium dahliae[J]. Philosophical Transactions of the Royal Society B,2019,374(1767):20180309.
[77] Cai Q,Qiao L L,Wang M,et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science,2018:360(6393):1126-1129.
[78] Tian B,Wang S C,Todd T C,et al. Genome-wide identification of soybean microRNA responsive to soybean cyst nematodes infection by deep sequencing[J]. BMC Genomics,2017,18:572.
[79] Li X Y,Wang X,Zhang S P,et al. Identification of soybean microRNAs involved in soybean cyst nematode infection by deep sequencing[J]. PLoS One,2012,7(6):e39650.
[80] Hewezi T,Maier T R,Nettleton D,et al. The Arabidopsis microRNA396-GRF1/GRF3 regulatory module acts as a developmental regulator in the reprogramming of root cells during cyst nematode infection[J]. Plant Physiology,2012,159:321-335.
[81] Scacheri P C,Rozenblatt-Rosen O,Caplen N J,et al. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells[J]. Proc Natl Acad Sci USA,2004,101(7):1892-1897.
[82] Farboud B,Lo T. Targeted genome editing techniques in C.elegans and other nematode species[M]//Church G,Appasani K. Genome Editing and Engineering. Cambridge:Cambridge University Press,2018:3-21.

相似文献/References:

[1]贺子义,张永存.环氧树脂包埋法制备植物寄生线虫扫描电镜样品[J].南京农业大学学报,1986,9(2):130.[doi:10.7685/j.issn.1000-2030.1986.02.021]
[2]亓竹冉,刘天鸿,王宁,等.出口蔬菜花卉种苗基地的植物线虫种类调查和鉴定[J].南京农业大学学报,2014,37(5):93.[doi:10.7685/j.issn.1000-2030.2014.05.015]
 QI Zhuran,LIU Tianhong,WANG Ning,et al.Occurrence and species identification of nematode parasites of vegetables and horticultural plant seedlings in export plantations[J].Journal of Nanjing Agricultural University,2014,37(6):93.[doi:10.7685/j.issn.1000-2030.2014.05.015]
[3]王源超.诱饵模式——病原菌致病的全新机制[J].南京农业大学学报,2018,41(1):1.[doi:10.7685/jnau.201801100]
 WANG Yuanchao.A new paradigm in plant-pathogen interactions:pathogen evolved a paralogous decoy to shield the virulence factor from host inhibition[J].Journal of Nanjing Agricultural University,2018,41(6):1.[doi:10.7685/jnau.201801100]
[4]张美祥.卵菌胞内效应子研究进展[J].南京农业大学学报,2018,41(1):18.[doi:10.7685/jnau.201706100]
 ZHANG Meixiang.Recent research progress on oomycete cytoplasmic effectors[J].Journal of Nanjing Agricultural University,2018,41(6):18.[doi:10.7685/jnau.201706100]

备注/Memo

备注/Memo:
收稿日期:2019-06-24。
基金项目:国家自然科学基金项目(31872923)
作者简介:王暄,博士,教授,从事植物线虫与寄主互作的分子机制研究,E-mail:xuanwang@njau.edu.cn。
通信作者:李红梅,博士,教授,研究方向为植物病原线虫学,E-mail:lihm@njau.edu.cn。
更新日期/Last Update: 1900-01-01