[1]张娅,黄天虹,张西林,等.不结球白菜BcSERK1基因的克隆及表达分析[J].南京农业大学学报,2019,42(6):1014-1021.[doi:10.7685/jnau.201901034]
 ZHANG Ya,HUANG Tianhong,ZHANG Xilin,et al.Cloning and expression analysis of BcSERK1 from non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2019,42(6):1014-1021.[doi:10.7685/jnau.201901034]
点击复制

不结球白菜BcSERK1基因的克隆及表达分析()
分享到:

《南京农业大学学报》[ISSN:1000-2030/CN:32-1148/S]

卷:
42卷
期数:
2019年6期
页码:
1014-1021
栏目:
植物科学
出版日期:
2019-11-15

文章信息/Info

Title:
Cloning and expression analysis of BcSERK1 from non-heading Chinese cabbage
作者:
张娅 黄天虹 张西林 刘同坤 侯喜林 李英
南京农业大学作物遗传与种质创新国家重点实验室/农业农村部华东地区园艺作物生物学与种质创新重点实验室/园艺学院, 江苏 南京 210095
Author(s):
ZHANG Ya HUANG Tianhong ZHANG Xilin LIU Tongkun HOU Xilin LI Ying
State Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture and Rural Affairs/College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
关键词:
不结球白菜BcSERK1克隆序列分析亚细胞定位胚胎发生
Keywords:
non-heading Chinese cabbageBcSERK1clonesequence analysissubcellular localizationembryogenesis
分类号:
S634.3
DOI:
10.7685/jnau.201901034
摘要:
[目的] 本文旨在研究不结球白菜BcSERK1基因及其在胚胎发生中的作用。[方法] 采用同源克隆的方法从不结球白菜‘二桩白’中克隆到BcSERK1基因全长序列,利用生物信息学分析其结构特征,并与其他物种进行氨基酸序列比对和进化分析,同时利用基因枪介导的方法进行亚细胞定位;利用小孢子培养技术研究不结球白菜‘二桩白’和‘四九菜心’小孢子培养出胚情况;采用实时荧光定量PCR (RT-qPCR)分析BcSERK1基因在2个品种不同组织和在小孢子胚胎发生早期的表达特征。[结果] BcSERK1含有1个1 878 bp开放阅读框,编码625个氨基酸。与其他物种的氨基酸序列比对和系统进化分析结果显示:BcSERK1在进化过程中保守程度较高,与甘蓝型油菜亲缘关系最近。亚细胞定位结果显示:BcSERK1蛋白定位于细胞膜上。游离小孢子培养结果显示:‘二桩白’出胚率较高,每蕾6.67个胚,而‘四九菜心’不出胚。RT-qPCR结果表明:BcSERK1在2个品种不同组织中均有表达,除根外‘四九菜心’的组织中其表达量均低于‘二桩白’;在小孢子胚胎发生早期,BcSERK1基因在‘二桩白’不同培养时间的表达量均高于‘四九菜心’。[结论] BcSERK1蛋白在进化过程中保守性较高,定位于细胞膜上;SERK1基因在2个不结球白菜品种中的差异表达表明该基因对胚胎发生具有重要作用。
Abstract:
[Objectives] The aim of this study was to clone and study the effect of BcSERK1 gene in embryogenesis.[Methods] The full-length sequence of BcSERK1 gene was cloned from the non-heading Chinese cabbage ‘Erzhuangbai’ by homologous cloning. The structural characteristics were analyzed by bioinformatics,and amino acid sequence alignment and evolution analysis were performed with other species,and subcellular localization was performed by particle bombardment. Isolated microspore culture technique was used to study the microspore embryogenesis frequency of the non-heading Chinese cabbage ‘Erzhuangbai’ and ‘Sijiucaixin’. Real-time quantitative PCR(RT-qPCR)was used to analyze the expression characteristics of BcSERK1 gene in different tissues and during the early stage of microspore embryogenesis of two cultivars.[Results] BcSERK1 contained a 1 878 bp open reading frame encoding 625 amino acids. The amino acid sequence alignment and phylogenetic analysis with other species showed that BcSERK1 was highly conserved in the evolutionary process,and it was closely related to Brassica napus. Subcellular localization results showed that BcSERK1 protein was localized on the cell membrane. The results of isolated microspore culture showed that the microspore embryogenesis frequency of ‘Erzhuangbai’ was higher,reaching 6.67 embryos per bud,while the ‘Sijiucaixin’ did not produce embryos. RT-qPCR results indicated BcSERK1 expressed in different tissues of two cultivars,but the expression level of each tissue except for root in ‘Sijiucaixin’ was lower than that in ‘Erzhuangbai’,and in the early stage of microspore embryogenesis,the expression level of BcSERK1 gene in ‘Erzhuangbai’ was higher than that in ‘Sijiucaixin’.[Conclusions] BcSERK1 protein was highly conserved during evolution and localizes on the cell membrane. The differential expression of BcSERK1 gene in non-heading Chinese cabbage showed that this gene played an important role in embryogenesis.

参考文献/References:

[1] Liu C,Wang J L,Huang T D,et al. A missense mutation in the VHYNP motif of a DELLA protein causes a semi-dwarf mutant phenotype in Brassica napus[J]. Theoretical and Applied Genetics,2010,121(2):249-258.
[2] Lu Y,Dai S Y,Gu A X,et al. Microspore induced doubled haploids production from ethyl methanesulfonate(EMS)soaked flower buds is an efficient strategy for mutagenesis in Chinese cabbage[J]. Frontiers in Plant Science,2016,7:1780.
[3] 李菲,张淑江,章时蕃,等. 基因枪法介导大白菜小孢子转基因技术研究初报[J]. 园艺学报,2017,44(1):62-68. Li F,Zhang S J,Zhang S F,et al. Transformation of Chinese cabbage microspores by particle bombardment[J]. Acta Horticulturae Sinica,2017,44(1):62-68(in Chinese with English abstract).
[4] 孟茜. 细胞穿透肽介导的大白菜小孢子遗传转化体系的构建[D]. 沈阳:沈阳农业大学,2014. Meng Q. Establishment of system for genetic transformation mediated by cell penetrating peptides under isolated microspore culture in Chinese cabbage[D]. Shenyang:Shenyang Agricultural University,2014(in Chinese with English abstract).
[5] Brew-Appiah R A T,Ankrah N,Liu W,et al. Generation of doubled haploid transgenic wheat lines by microspore transformation[J]. PLoS One,2013,8(11):e80155.
[6] Kitashiba H,Taguchi K,Kaneko I,et al. Identification of loci associated with embryo yield in microspore culture of Brassica rapa by segregation distortion analysis[J]. Plant Cell Reports,2016,35(10):2197-2204.
[7] Liu X,Han F Q,Kong C C,et al. Rapid introgression of the Fusarium wilt resistance gene into an elite cabbage line through the combined application of a microspore culture,genome background analysis,and disease resistance-specific marker assisted foreground selection[J]. Frontiers in Plant Science,2017,8:354.
[8] Valdés A,Clemens R,M?llers C. Mapping of quantitative trait loci for microspore embryogenesis-related traits in the oilseed rape doubled haploid population DH4069×Express 617[J]. Molecular Breeding,2018,38(5):65.
[9] den Toorn M A,Albrecht C,de Vries S. On the origin of SERKs:bioinformatics analysis of the somatic embryogenesis receptor kinases[J]. Molecular Plant,2015,8(5):762-782.
[10] Li J. Multi-tasking of somatic embryogenesis receptor-like protein kinases[J]. Current Opinion in Plant Biology,2010,13(5):509-514.
[11] Schmidt E D,Guzzo F,Toonen M A J,et al. A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos[J]. Development,1997,124:2049-2062.
[12] Hecht V,Vielle-Calzada J P,Hartog M V,et al. The Arabidopsis somatic embryogenesis receptor kinase1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture[J]. Plant Physiology,2001,127(3):803-816.
[13] Baudino S,Hansen S,Brettshneider R,et al. Molecular characterisation of two novel maize LRR receptor-like kinases,which belong to the SERK gene family[J]. Planta,2001,213(1):1-10.
[14] Santos M O,Romano E,Vieira L S,et al. Suppression of SERK gene expression affects fungus tolerance and somatic embryogenesis in transgenic lettuce[J]. Plant Biology,2009,11(1):83-89.
[15] Pérez-Pascual D,Jiménez-Guillen D,Villanueva-Alonzo H,et al. Ectopic expression of the Coffea canephora SERK1 homolog-induced differential transcription of genes involved in auxin metabolism and in the developmental control of embryogenesis[J]. Physiologia Plantarum,2018,163(4):530-551.
[16] Hu H,Xiong L,Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta,2005,222(1):107-117.
[17] Singla B,Khurana J P,Khurana P. Characterization of three somatic embryogenesis receptor kinase genes from wheat,Triticum aestivum[J]. Plant Cell Reports,2008,27(5):833-843.
[18] Pandey D K,Singh A K,Chaudhary B. Boron-mediated plant somatic embryogenesis:a provocative model[J]. Journal of Botany,2012,2012:1-9.
[19] 侯喜林,宋小明. 不结球白菜种质资源的研究与利用[J]. 南京农业大学学报,2012,35(5):35-42. DOI:10.7685/j.issn.1000-2030.2012.05.005. Hou X L,Song X M. Research and utilization of Brassica campestris ssp. chinensis Makino(non-heading Chinese cabbage)germplasm resources[J]. Journal of Nanjing Agricultural University,2012,35(5):35-42(in Chinese with English abstract).
[20] 申浩冉,肖栋,侯喜林. 不结球白菜调控开花时间候选基因BcVIL1的克隆与表达分析[J]. 南京农业大学学报,2018,41(5):825-831. DOI:10.7685/jnau.201711011. Shen H R,Xiao D,Hou X L. Cloning and expression analysis of flowering time candidate gene BcVIL1 in non-heading Chinese cabbage[J]. Journal of Nanjing Agricultural University,2018,41(5):825-831(in Chinese with English abstract).
[21] 黄天虹,张娅,梁超凡,等. 不结球白菜游离小孢子培养及植株再生研究[J]. 核农学报,2019,33(2):240-247. Huang T H,Zhang Y,Liang C F,et al. Isolated microspore culture and microspore-derived plant regeneration in non-heading Chinese cabbage[J]. Acta Agriculturae Nucleatae Sinica,2019,33(2):240-247(in Chinese with English abstract).
[22] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method[J]. Methods,2001,25(4):402-408.
[23] Karlova R,de Vries S C. Advances in understanding brassinosteroid signaling[J]. Science’s STKE,2006,2006(354):pe36.
[24] Wang Z Y,Bai M Y,Oh E,et al. Brassinosteroid signaling network and regulation of photomorphogenesis[J]. Annual Review of Genetics,2012,46(1):701-724.
[25] Gou X P,Yin H J,He K,et al. Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling[J]. PLoS Genetics,2012,8(1):e1002452.
[26] Wu W Z,Wu Y J,Gao Y,et al. Somatic embryogenesis receptor-like kinase 5 in the ecotype Landsberg erecta of Arabidopsis is a functional RD LRR-RLK in regulating brassinosteroid signaling and cell death control[J]. Frontiers in Plant Science,2015,6:852.
[27] Malik M R,Wang F,Dirpaul J M,et al. Isolation of an embryogenic line from non-embryogenic Brassica napus cv. Westar through microspore embryogenesis[J]. Journal of Experimental Botany,2008,59(10):2857-2873.
[28] Yang C,Zhao T J,Yu D Y,et al. Isolation and functional characterization of a SERK gene from soybean(Glycine max(L.)Merr.)[J]. Plant Molecular Biology Reporter,2011,29(2):334-344.
[29] Li Y B,Liu C H,Guo G M,et al. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses[J]. Journal of Plant Interactions,2017,12(1):279-285.
[30] Ahmadi B,Masoomi-Aladizgeh F,Shariatpanahi M E,et al. Molecular characterization and expression analysis of SERK1 and SERK2 in Brassica napus L.:implication for microspore embryogenesis and plant regeneration[J]. Plant Cell Reports,2016,35(1):185-193.

相似文献/References:

[1]张爱芬,王立,侯喜林,等.不结球白菜S 位点受体激酶基因片段的克隆与表达分析[J].南京农业大学学报,2011,34(3):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
 ZHANG Ai-fen,WANG Li,HOU Xi-lin,et al.Cloning and expression analysis of SRK gene fragment in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(6):25.[doi:10.7685/j.issn.1000-2030.2011.03.005]
[2]黄建凤,徐小梦,沈其荣,等.2个不结球白菜品种硝酸盐累积差异的生理机制[J].南京农业大学学报,2011,34(1):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
 HUANG Jian-feng,XU Xiao-meng,SHEN Qi-rong,et al.Physiological mechanisms for the difference of nitrate accumulation in two cultivars of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2011,34(6):74.[doi:10.7685/j.issn.1000-2030.2011.01.014]
[3]陈以博,侯喜林,陈晓峰.不结球白菜幼苗耐热性机制初步研究[J].南京农业大学学报,2010,33(1):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
 CHEN Yi-bo,HOU Xi-lin,CHEN Xiao-feng.Studies on heat tolerance mechanism of non-heading Chinese cabbage(Brassica campestris ssp.chinensis)[J].Journal of Nanjing Agricultural University,2010,33(6):27.[doi:10.7685/j.issn.1000-2030.2010.01.006]
[4]郑佳秋,侯喜林,朱红芳.热激诱导不结球白菜热激蛋白合成与耐冷性分析[J].南京农业大学学报,2010,33(2):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
 ZHENG Jia-qiu,HOU Xi-lin,ZHU hong-fang.Induction of heat shock protein synthesis and chilling tolerance in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(6):30.[doi:10.7685/j.issn.1000-2030.2010.02.006]
[5]班青宇,耿建峰,侯喜林,等.不结球白菜叶片脯氨酸与可溶性蛋白含量的QTL分析[J].南京农业大学学报,2010,33(2):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
 BAN Qing-yu,GENG Jian-feng,HOU Xi-lin,et al.QTL mapping for proline and soluble protein content of leaves in non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(6):35.[doi:10.7685/j.issn.1000-2030.2010.02.007]
[6]郝慧楠,王倩,侯喜林,等.不结球白菜主要农艺性状的分离分析[J].南京农业大学学报,2010,33(4):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
 HAO Hui-nan,WANG Qian,HOU Xi-lin,et al.Segregation analysis of the main agronomic characters of non-heading Chinese cabbage[J].Journal of Nanjing Agricultural University,2010,33(6):8.[doi:10.7685/j.issn.1000-2030.2010.04.002]
[7]荣子龙,侯喜林,史公军,等.不结球白菜晚抽薹BcFLC1基因克隆及表达分析[J].南京农业大学学报,2010,33(6):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
 RONG Zi-long,HOU Xi-lin,SHI Gong-jun,et al.Cloning and expression analysis of late bolting BcFLC1 gene from Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2010,33(6):23.[doi:10.7685/j.issn.1000-2030.2010.06.005]
[8]申娜娜,侯喜林.不结球白菜感染霜霉病菌后防御物质及酶的变化[J].南京农业大学学报,2009,32(1):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
 SHEN Shan-na,HOU Xi-lin.Changes of protective substances and enzymes in non-heading Chinese cabbage after infection by downy mildew[J].Journal of Nanjing Agricultural University,2009,32(6):23.[doi:10.7685/j.issn.1000-2030.2009.01.005]
[9]成妍,班青宇,王倩,等.不结球白菜游离小孢子培养及再生植株的倍性鉴定[J].南京农业大学学报,2009,32(2):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
 CHENG Yan,BAN Qing-yu,WANG Qian,et al.Isolated microspore culture and ploidy identification of microspore-derived plants in Brassica campestris ssp.chinensis[J].Journal of Nanjing Agricultural University,2009,32(6):25.[doi:10.7685/j.issn.1000-2030.2009.02.006]
[10]刘琳,侯喜林,王利英,等.不结球白菜感染芜菁花叶病毒后4种防御酶活性变化及其抗病相关性[J].南京农业大学学报,2009,32(3):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]
 LIU Lin,HOU Xi-lin,WANG Li-ying,et al.Changes of four protective enzyme activities and relationships to resistance in non-heading Chinese cabbage after infection of Turnip mosaic virus[J].Journal of Nanjing Agricultural University,2009,32(6):14.[doi:10.7685/j.issn.1000-2030.2009.03.003]

备注/Memo

备注/Memo:
收稿日期:2019-01-19。
基金项目:国家自然科学基金项目(31872106);国家重点研发计划项目(2018YFD1000800,2017YFD0101803);国家大宗蔬菜产业技术体系项目(CARS-23-A-06)
作者简介:张娅,硕士研究生。
通信作者:李英,教授,博导,主要从事蔬菜遗传育种和分子生物学研究,E-mail:yingli@njau.edu.cn。
更新日期/Last Update: 1900-01-01